浙江省高中数学说课比赛课件:《方程的根与函数的零点》之六(新人教A必修1).ppt
《浙江省高中数学说课比赛课件:《方程的根与函数的零点》之六(新人教A必修1).ppt》由会员分享,可在线阅读,更多相关《浙江省高中数学说课比赛课件:《方程的根与函数的零点》之六(新人教A必修1).ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.1.1 3.1.1 方程的根与函数的零点方程的根与函数的零点2021/8/8 星期日1目目 录一、一、教材、学情分析教材、学情分析二、二、教学目标、重难点分析教学目标、重难点分析三、三、教法、学法分析教法、学法分析四、四、教学流程教学流程2021/8/8 星期日2一、教材结构与内容简析一、教材结构与内容简析 函数与方程思想是中学数学的重要思想。函数与方程思想是中学数学的重要思想。本节是在学习了前两章函数性质的基础上,本节是在学习了前两章函数性质的基础上,利用利用函数的图象和性质函数的图象和性质来判断方程的根的存在来判断方程的根的存在性及根的个数,从而了解函数的零点与方程的性及根的个数,从而
2、了解函数的零点与方程的根的关系以及掌握函数在某个区间上存在零点根的关系以及掌握函数在某个区间上存在零点的判定方法;为下节的判定方法;为下节“二分法求方程的近似解二分法求方程的近似解”和后续学习的算法提供基础和后续学习的算法提供基础 因此本节内容具有承前启后的作用,非常因此本节内容具有承前启后的作用,非常重要重要 2021/8/8 星期日3二、学情分析二、学情分析 在此之前,学生对一元二次函数和一元二次方程在此之前,学生对一元二次函数和一元二次方程已经比较熟悉,会判断具体的一元二次方程有没有根,已经比较熟悉,会判断具体的一元二次方程有没有根,有几个根,会用求根公式求根。有几个根,会用求根公式求根
3、。但是对一元二次函数与方程的联系认识不全面,但是对一元二次函数与方程的联系认识不全面,也没有上升到一般的函数与方程的层次。也没有上升到一般的函数与方程的层次。因此,在讲解本节内容时,让学生对函数与方程因此,在讲解本节内容时,让学生对函数与方程的关系及零点存在定理有较为全面的认识。的关系及零点存在定理有较为全面的认识。2021/8/8 星期日4二、教学目标二、教学目标(一)认知目标:(一)认知目标:1 1理解函数的零点与方程的根的联系理解函数的零点与方程的根的联系.2 2理解并会用零点存在定理判断函数的零点理解并会用零点存在定理判断函数的零点(二)能力目标:(二)能力目标:体会数形结合思想体会数
4、形结合思想,转化思想以及函数与方程思想的意义转化思想以及函数与方程思想的意义和价值,培养学生自主发现、探究实践的能力和价值,培养学生自主发现、探究实践的能力(三)情感目标:(三)情感目标:培养学生锲而不舍的探索精神和严密思考的良好学习习培养学生锲而不舍的探索精神和严密思考的良好学习习惯。惯。2021/8/8 星期日5三、教学重点、难点三、教学重点、难点教学重点:教学重点:理解函数的零点与方程的根理解函数的零点与方程的根 之间的联系,掌握零点存在之间的联系,掌握零点存在 的判定条件的判定条件 教学难点:教学难点:探究发现函数零点的存在性探究发现函数零点的存在性.2021/8/8 星期日6四、教法
5、分析四、教法分析教法上,以问题为纽带,用问题引出内容,激发学生积教法上,以问题为纽带,用问题引出内容,激发学生积极主动地进行探索;同时向学生渗透问题意识,培养学极主动地进行探索;同时向学生渗透问题意识,培养学生发现问题、解决问题的能力。生发现问题、解决问题的能力。采用采用“提出问题提出问题引导探究引导探究得出结论得出结论实际实际应用应用”的教与学模式的教与学模式.2021/8/8 星期日7五、教学过程五、教学过程提出问题,激发学生思考提出问题,激发学生思考函数零点概念函数零点概念零点存在定理零点存在定理巩固及应用巩固及应用总结提升总结提升课后作业课后作业巩固及应用巩固及应用2021/8/8 星
6、期日8一些复杂的方程无法一些复杂的方程无法求解,造成学生的认求解,造成学生的认知冲突知冲突,引发学生的好引发学生的好奇心和求知欲。此时奇心和求知欲。此时开门见山的提出用开门见山的提出用函函数的思想数的思想解决解决方程根方程根的问题的问题,点明本节课的点明本节课的课题。课题。(一)设问激疑,引出课题(一)设问激疑,引出课题设计意图设计意图五、教学过程五、教学过程求方程求方程3x2 6 x+1=0的实数根的实数根 变式:求下列方程的实数根变式:求下列方程的实数根3x3 6x+1=0 问题问题1:lnx+2x-6=02021/8/8 星期日9(二)启发引导,逐步深入(二)启发引导,逐步深入五、教学过
7、程五、教学过程设计意图设计意图以问题激发学生以问题激发学生思考,将大问题思考,将大问题分解为几个小问分解为几个小问题,自然地得到题,自然地得到函数和方程的初函数和方程的初步认识。步认识。让学生体会到如让学生体会到如何分析问题。何分析问题。一元二次方程一元二次方程axax2 2+bx+c=0(a0)+bx+c=0(a0)与二次函数与二次函数y=axy=ax2 2+bx+c(a0)+bx+c(a0)有什么联系?有什么联系?问题问题2:子问题:子问题:形式上有什么相同点?形式上有什么相同点?有什么不同点?有什么不同点?怎样可以由函数得到方程?怎样可以由函数得到方程?2021/8/8 星期日10(三)
8、数形结合,巩固认识(三)数形结合,巩固认识 五、教学过程五、教学过程设计意图设计意图 以实例说明以实例说明方程、函数、方程、函数、函数图象三函数图象三者的关系者的关系,渗渗透透数形结合数形结合的思想。的思想。为为引入函数零引入函数零点的概念打点的概念打下基础。下基础。方程的根方程的根函数值函数值y=0y=0时的时的x x的值的值函数图象与函数图象与x x轴交点的横坐标轴交点的横坐标x1=1,x2=3xy01321121234(1,0)(3,0)板书板书2021/8/8 星期日11五、教学过程五、教学过程设计意图设计意图从具体从具体到一般,从到一般,从简单到复杂简单到复杂,培养学生的培养学生的思
9、维能力和思维能力和归纳能力归纳能力(三)数形结合,巩固认识(三)数形结合,巩固认识 2021/8/8 星期日12五、教学过程五、教学过程设计意图设计意图自然地得出自然地得出函数零点的函数零点的概念。概念。(四)顺水推舟,得出概念(四)顺水推舟,得出概念 方程方程f(x)=0的实数根的实数根函数函数y=f(x)的图象与的图象与x轴交点的横坐标轴交点的横坐标函数函数y=f(x)的的零点零点函数值等于函数值等于零零时的时的x的值的值2021/8/8 星期日13五、教学过程五、教学过程设计意图设计意图自然地得出自然地得出等价关系。等价关系。(四)顺水推舟,得出概念(四)顺水推舟,得出概念 方程方程f(
10、x)=0有实数根有实数根函数函数y=f(x)的图象与的图象与x轴有交点轴有交点函数函数y=f(x)有零点有零点2021/8/8 星期日141.会判断函数是否有会判断函数是否有零点;零点;2.会用解方程的方法会用解方程的方法求简单的函数零点求简单的函数零点;3.体会方程与函数的体会方程与函数的联系;联系;4.明确函数的零点是明确函数的零点是一个实数。一个实数。(五)概念辨析,巩固新知(五)概念辨析,巩固新知设计意图设计意图五、教学过程五、教学过程判断下列函数是否有零点,若有,判断下列函数是否有零点,若有,请求出请求出2021/8/8 星期日15设计意图设计意图五、教学过程五、教学过程(六)提出问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方程的根与函数的零点 浙江省 高中数学 比赛 课件 方程 函数 零点 新人 必修
限制150内