SPC统计过程控制与休哈特控制图.doc
《SPC统计过程控制与休哈特控制图.doc》由会员分享,可在线阅读,更多相关《SPC统计过程控制与休哈特控制图.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1/15统计过程控制(统计过程控制(SPCSPC)与休哈特控制图)与休哈特控制图(一一)这里介绍 SPC,控制图的重要性,控制图原理,判稳与判异准则,休哈特控制图,通用控制图。第一章第一章 统计过程控制(统计过程控制(SPCSPC)一、什么是一、什么是 SPCSPCSPC 是英文 Statistical Process Control 的字首简称,即统计过程控制。SPC 就是应用统计技术对过程中的各个阶段进行监控,从而达到改进与保证质量的目的。SPC 强调全过程的预防。SPC 给企业各类人员都带来好处。对于生产第一线的操作者,可用 SPC 方法改进他们的工作,对于管理干部,可用 SPC 方法消
2、除在生产部门与质量管理部门间的传统的矛盾,对于领导干部,可用 SPC 方法控制产品质量,减少返工与浪费,提高生产率,最终可增加上缴利税。SPC 的特点是:(1)SPC 是全系统的,全过程的,要求全员参加,人人有责。这点与全面质量管理的精神完全一致。(2)SPC 强调用科学方法(主要是统计技术,尤其是控制图理论)来保证全过程的预防。(3)SPC 不仅用于生产过程,而且可用于服务过程和一切管理过程。二、二、SPCSPC 发展简史发展简史过程控制的概念与实施过程监控的方法早在 20 世纪 20 年代就由美国的休哈特(W.A.Shewhart)提出。今天的 SPC 与当年的休哈特方法并无根本的区别。在
3、第二次世界大战后期,美国开始将休哈特方法在军工部门推行。但是,上述统计过程控制方法尚未在美国工业牢固扎根,第二次世界大战就已结束。战后,美国成为当时工业强大的国家,没有外来竞争力量去迫使美国公司改变传统方法,只存在美国国的竞争。由于美国国各公司都采用相似的方法进行生产,竞争性不够强,于是过程控制方法在 19501980 年这一阶段,逐渐从美国工业中消失。反之,战后经济遭受严重破坏的日本在 1950 年通过休哈特早期的一个同事戴明(W.Ed-wardsDeming)博士,将 SPC 的概念引入日本。从 19501980 年,经过 30 年的努力,日本跃居世界质量与生产率的领先地位。美国著名质量管
4、理专家伯格(RogerW.Berger)教授指出,日本成功的基石之一就是 SPC。在日本强有力的竞争之下,从 80 年代起,SPC 在西方工业国家复兴,并列为高科技制(之一。例如,加拿大钢铁公司(STELCO)在 1988 年列出的该公司七大高科技方向如下:(1)连铸,(2)炉外精炼钢包冶金站,(3)真空除气,(4)电镀钵流水线,(5)电子测量,(6)高级电子计算机,(7)SPC。美国从 20 世纪 80 年代起开始推行 SPC。美国汽车工业已大规模推行了 SPC,如福特汽车公司,通用汽车公司,克莱斯勒汽车公司等,上述美国三大汽车公司在 ISO9000 的基础上还联合制定了QS9000 标准,
5、在与汽车有关的行业中,颇为流行。美国钢铁工业也大力推行了 SPC,如美国 LTV 钢铁公司,陆钢铁公司,伯利恒钢铁公司等等。三、什么是三、什么是 SPCDSPCD 与与 SPCDA?SPCDA?SPC 迄今已经经历了三个发展阶段,即:SPC,SPCD 与 SPCDA。1第一阶段为 SPC。SPC 是美国休哈特在 20 世纪二、三十年代所创造的理论,它能以便人们采取2/15措施,消除异常,恢复过程的稳定。这就是所科学地区分出生产过程中产品质量的偶然波动与异常波动,从而对过程的异常与时告警,谓统计过程控制。2第二个阶段为 SPCD。SPCD 是英文 Statistical Process Cont
6、rol and Diagnosis 的字首简称,即统计过程控制与诊断。SPC 虽然能对过程的异常进行告警,但是它并不能告诉我们是什么异常,发生于何处,即不能进行诊断。1982 年我国公绪首创两种质量诊断理论,突破了传统的美国休哈特质量控制理论,开辟了统计质量诊断的新方向。从此 SPC 上升为 SPCD,SPCD 是 SPC 的进一步发展,也是 SPC 的第二个发展阶段。1994 年公绪教授与其博士生慧英博士提出多元逐步诊断理论,1996年公绪教授又提出两种质量多元诊断理论,解决了多工序、多指标系统的质量控制与诊断问题。目前 SPCD 已进入实用性阶段,我国仍然居于领先地位。3第三个阶段为 SP
7、CDA。SPCD 也是英文 Statistical Process Control,Diagnosis andAdjustment的字首简称,即统计过程控制、诊断与调整。正如同病人确诊后要进行治疗,过程诊断后自然要加以调整,故 SPCDA 是 SPCD 的进一步发展,也是 SPC 的第三个发展阶段。这方面国外刚刚起步,他们称之为 ASPC(AlgorithmicStatistical Process Control,算法的统计过程控制),目前尚无实用性的成果。公绪教授与他的博士生也正在进行这方面的研究。四、四、SPCSPC 和和 SPCDSPCD 的进行步骤的进行步骤进行 SPC 和 SPCD
8、 有下列步骤:步骤 1::培训 SPC 和 SPCD。培训容主要有下列各项:SPC 的重要性,正态分布等统计基本知识,质量管理七种工具,其中特别是要对控制图深入学习,两种质量诊断理论,如何制订过程控制网图,如何制订过程控制标准等等。步骤 2:确定关键变量(即关键质量因素)。具体又分为以下两点:(1)对全厂每道工序都要进行分析(可用因果图),找出对最终产品影响最大的变量,即关键变量(可用排列图)。如美国 LTV 钢铁公司共确定了大约 20000 个关键变量。(2)找出关键变量后,列出过程控制网图。所谓过程控制网图即在图中按工艺流程顺序将每道工序的关键变量列出。步骤 3:提出或改进规格标准。具体又
9、分为以下两点:(1)对步骤 2 得到的每一个关键变量进行具体分析。(2)对每个关键变量建立过程控制标准,并填写过程控制标准表。所在车间控制点控制因素文件号制定日期控制容过程标准控制理由测量规定数据报告途径3/15控制图纠正性措施有无建立控制图控制图类型制定者制定日期批准者批准日期操作程序审核程序制定者审核者审核日期过程控制标准表本步骤最困难,最费时间,例如制定一个部门或车间的所有关键变量的过程控制标准,大约需要两个多人年(即一个人要工作量年多)。步骤 4:编制控制标准手册,在各部门落实。将具有立法性质的有关过程控制标准的文件编制成明确易懂、便于操作的手册,使各道工序使用。如美国 LTV 公司共
10、编了 600 本上述手册。步骤 5:对过程进行统计监控。主要应用控制图对过程进行监控。若发现问题,则需对上述控制标准手册进行修订,与反馈到步骤 4。步骤 6::对过程进行诊断并采取措施解决问题。可注意以下几点:(1)可以运用传统的质量管理方法,如七种工具,进行分析。(2)可以应用诊断理论,如两种质量诊断理论,进行分析和诊断。(3)在诊断后的纠正过程中有可能引出新的关键质量因素,即反馈到步骤 2,3,4。推行 SPC 的效果是显著的。如美国率 LTV 公司 1985 年实施了 SPC 后,劳动生产率提高了 20%以上。五、宣贯五、宣贯 ISO9000ISO9000 国际标准与推行国际标准与推行
11、SPCSPC 和和 SPCDSPCD 的关系的关系ISO9000 一 1994 年新版与 1987 年初版相比校,有三个强调:(1)强调“把一切都看成过程,(2)强调“预防,(3)强调“统计技术的应用是不可剪裁的。其实,这三者是互相联系、密切不可分的。众所周知,质量管理这门学科有个重要的特点,即对质量管理所提出的原则、方针、目标都要有科学方法和科学措施来加以保证。例如,强调预防就要应用统计方法(主要是应用 SPC 和 SPCD)和科学措施来保证它的实现。这样,后两个强调是紧密联系着的。其次,SPC 即统计过程控制,故第一个强调也与后二者联系起来了。所以这三个强调是互相联系、密不可分的。企业推行
12、 ISO9000应该注意到这三个强调,在思想上应该明确:SPC 和 SPCD 是推行 ISO9000 的基础。第二章第二章 控制图原理控制图原理一、控制图的重要性一、控制图的重要性贯彻预防原则是依靠推行 SPC 和 SPCD 来实现的,而居 QC 七个工具核心地位的控制图是 SPC 和 SPCD的重要工具。1984 年日本名古屋工业大学调查了 115 家日本各行各业的中小型工厂,结果发现平均4/15每家工厂使用 137 控制图,这个数字对于我们推行 SPC 和 SPCD 是有一定的参考意义的。可以说,工厂中使用控制图的数在某种意义上反映了管理现代化的程度。二、什么是控制图二、什么是控制图控制图
13、是对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图。图上有中心线(CL)、上控制界限(UCL)和下控制界限(LCL),并有按时间顺序抽取的样本统计量数值的描点序列,参见控制图示例图。三、控制图原理的第一种解释三、控制图原理的第一种解释假定某车间有部车床车制直径为 10mm 的机螺丝。为了了解机螺丝的质量,从车制好的机螺丝中抽出 100 个,测量并记录其直径数据,如表所示。机螺丝直径数据(mm)10.249.9410.009.999.859.9410.4210.3010.3610.0910.219.799.7010.049.989.8110.1310.219.849.5510.0
14、110.369.889.2210.019.859.6110.0310.4110.1210.159.7610.579.7610.1510.1110.0310.1510.2110.059.739.829.8210.0610.4210.2410.609.5810.069.9810.129.9710.3010.1210.1410.1710.0010.0910.119.709.499.9710.189.999.899.839.559.8710.1910.3910.2710.1810.019.779.5810.3310.159.919.6710.1010.0910.3310.069.539.9510.39
15、10.169.7310.159.759.799.9410.099.979.919.649.8810.029.919.54为找出这些数据的统计规律将它们分组、统计、作直方图,如机螺丝直径直方图所示。图中的直方高度与该组的频数成正比。5/15机螺丝直径直方图直方图趋近光滑曲线将各组的频数用数据总和 N=100 除,就得到各组的频率,它表示机螺丝直径属于各组的可能性大小。显然,各组频率之和为 1。若以直方面积来表示该组的频率,则所有直方分布曲线正态分布曲线面积总和也为 1。这时,直方的高=直方面积/组距=频率/组距=频数/(N组距)。因此,无论纵坐标取为频率或频率/组距,各直方的高都与频数成正比。故
16、机螺丝直径直方图所示的直方图仍可用,只要再作一条频率纵轴和一条直方面积表示频率的纵轴,见直方图趋近光滑曲线图。如果数据越多,分组越密,则机螺丝直径直方图的直方图也越趋近一条光滑曲线,如直方图趋近光滑曲线图所示。在极限情况下得到的光滑曲线即为分布曲线,它反映了产品质量的统计规律,如分布曲线图所示。在质量特性值为连续值时,最常见的典型分布为正态分布。例如机螺丝直径直方图中机螺丝直径的分布就是如此,它的特点是中间高、两头低、左右对称并延伸至无限。正态分布可用两个参数即均值和标准差来决定。正态分布有一个结论对质量管理很有用,即无论均值和标准差。取何值,产品质量特性值落在3之间的概率为 99.73,于是
17、落在3之外的概率为 100%一 99.73%=0.27%,而超过一侧,即大于-3或小于+3的概率为 0.27%/2=0.135%1,如正态分布曲线图。这个结论十分重要。美国休哈特就根据这一事实提出了控制图。控制图的演变过程参见控制图的演变图。首先把正态分布曲线图按顺时针方向转 90成下图(控制图的演变 a 图),由于上下的数值大小不合常规,故再把控制图的演变图上下翻转 180而成下图(控制图的演变 b 图),这样就得到一控制图,具体说是单值()控制图。现在结合机螺丝的例子来说明控制图的原理。设已知机螺丝直径的标准差为 0.26mm,现从上表的数据算得样本均值x=10.10mm,于是有+3x+3
18、=10.00+30.26=10.78(mm)6/15x=10.00(mm)-3x-3=10.00-30.26=9.22(mm)参见 x 控制图。称+3为上控制界,记为 UCL,称为中心线,记为 CL,称-3为上控制界,记为 LCL。这三者统称为控制线。规定中心线用实线绘制,上下控制界用虚线绘制。为了控制螺丝的质量,每隔 1 小时随机抽取一个车好的螺丝,测量其直径,将结果描点在 x 控制图中,并用直线段将点子连结,以便于观察点子的变化趋势。由图可看出,前三个点子都在控制界,但第四个点子超出上控制界。为了醒目,把它用小圆圈圈起来,表示这个机螺丝的直径过分粗了,应引起注意。现在对这第四个点子,应作何
19、判断?根据正态分布的结论,在生产正常的条件下,点子超出上控制界的概率只有 1左右,可能性非常小,可以认为它实际上不发生,若发生则认为生产中存在异常。而从 x 控制图也可看出,若生产异常,例如,由于车刀磨损,机螺丝直径将逐渐变粗,x增大,分布曲线将上移,这时分布曲线超出上控制界那部分面积(用阴影区表示)可能达到千分之几十、几百,比 1大得多,于是认为点子出界就判断异常。用数学语言来说,即根据小概率事件原理,小概率事件实际上不发生,若发生则判断异常。在控制图上描点,实质上就是进行统计假设检验,即检验假设(已知=0.26mm)H0:=10.00H1:10.00而控制图的上、下控制界即为接受域与拒绝域
20、的分界限,点子落在上、下界限之间,表明H0可接受,点子落在上、下界限之外,表明H0应拒绝。四、控制图原理的第二种解释四、控制图原理的第二种解释换个角度再来研究控制图的原理。根据来源的不同,质量因素可以分成 4M1E 五个方面。但从对质量的影响大小来看,质量因素可分成偶然因素(简称偶因)与异常因素(简称异因)两类。偶因是始终存在的,对质量的影响微小,但难以除去,例如机床开动时的轻微振动等。异因则有时存在,7/15对质量影响大,但不难除去,例如车刀磨损、固定机床的螺母松动等。偶因引起质量的偶然波动(简称偶波),异因引起质量的异常波动(简称异波)。偶波是不可避免的,但对质量的影响微小,故可把它看作背
21、景噪声而听之任之。异波则不然,它对质量的影响大,且采取措施不难消除,故在过程中异波与造成异波的异因是我们注意的对象,一旦发生,就应该尽快找出,采取措施加以消除,并纳入标准化,保证它不再出现。偶波与异波都是产品质量的波动,如何能发现异波的到来呢?经验与理论分析表明,当生产过程中只存在偶波时,产品质量将形成某种典型分布。例如,在车制螺丝的例子中形成正态分布。如果除去偶波外还有异波,则产品质量的分布必将偏离原来的典型分布。因此,根据典型分布是否偏离就能判断异波,即异因是否发生,而典型分布的偏离可由控制图检出。在上述车制螺丝的例子中,由于发生了车刀磨损的异因,螺丝直径的分布偏离了原来的正态分布而向上移
22、动,于是点子超出上控制界的概率大为增加,从而点子频频出界,表明存在异波。控制图上的控制界限就是区分偶波与异波的科学界限。根据上述,可以说休哈特控制图的实质是区分偶然因素与异常因素两类因素。五、控制图是如何贯彻预防原则的五、控制图是如何贯彻预防原则的控制图是如何贯彻预防原则的呢?这可以由以下两点看出:1.应用控制图对生产过程不断监控,当异常因素刚一露出苗头,甚至在未造成不合格品之前就能与时被发现。例如,在控制图重点子形成倾向图中点子有逐渐上升的趋势,所以可以在这种趋势造成不合格品之前就采取措施加以消除,起到预防的作用。2.在现场,更多的情况是控制图显示异常,表明异因已经发生,这时一定要贯彻下列
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SPC 统计 过程 控制 休哈特
限制150内