2013年中考数学专题复习讲座 第十五讲 二次函数的应用(学生版).doc
《2013年中考数学专题复习讲座 第十五讲 二次函数的应用(学生版).doc》由会员分享,可在线阅读,更多相关《2013年中考数学专题复习讲座 第十五讲 二次函数的应用(学生版).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013年中考数学专题复习第十五讲 二次函数的应用【基础知识回顾】一、 二次函数与一元二次方程:二、二次函数解析式的确定:1、设顶点式,即:设 2、设一般式,即:设 【提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设 以y轴为对称轴,可设 顶点在x轴上,可设 抛物线过原点 等】三、二次函数的应用1、实际问题中解决最值问题:2、与一次函数或直线形图形结合的综合性问题【提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围 2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题
2、】【重点考点例析】 考点一:二次函数的最值例1 (2012呼和浩特)已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A有最大值,最大值为 B有最大值,最大值为 C有最小值,最小值为 D有最小值,最小值为分析:先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特征求出其最值即可点评:本题考查的是二次函数的最值求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法本题是利用公式法求得的最值对应训练1(2012兰州)已知二次函数y=a(x+1)2-b(a0)有
3、最小值1,则a,b的大小关系为()Aab Bab Ca=b D不能确定考点二:确定二次函数关系式ABCOxy例2 (2012珠海)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b(x-2)2+m的x的取值范围分析:(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出k
4、x+b(x-2)2+m的x的取值范围点评:本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数与不等式组,求出B点坐标是解题的关键对应训练2(2012佳木斯)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0)(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且SOAB=3,求点B的坐标分析:(1)直接把(0,0),(2,0)代入y=x2+bx+c中,列方程组求b、c的值即可;(2)将二次函数解析式写成顶点式,可求顶点坐标及对称轴;(3)设点B的坐标为(a,b),根据三角形的面积公式 求b的值,再将纵坐标b代入抛物线解析式求
5、a的值,确定B点坐标点评:本题考查了待定系数法求二次函数解析式,二次函数的性质关键是将抛物线上两点坐标代入解析式,列方程组求解析式,将抛物线解析式写成顶点式,可求顶点坐标及对称轴考点三:二次函数与x轴的交点问题例3 (2012天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1x2,有下列结论:x1=2,x2=3;m;二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)其中,正确结论的个数是()A0 B1 C2 D3 分析:将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出
6、不等式的解集即可对选项进行判断;再利用根与系数的关系求出两根之积为6-m,这只有在m=0时才能成立,故选项错误;将选项中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项进行判断点评:此题考查了抛物线与x轴的交点,一元二次方程的解,根与系数的关系,以及根的判别式的运用,是中考中常考的综合题对应训练3(2012株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A(-3,0) B(-2,0) Cx
7、=-3 Dx=-2考点四:二次函数的实际应用例4 (2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-(x-4)2+3,由此可知铅球推出的距离是 m分析:根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可点评:本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键例5 (2012重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有
8、限,该企业投资自建设备处理污水,两种处理方式同时进行1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1x6,且x取整数)之间满足的函数关系如下表:月份x123456输送的污水量y1(吨)12000600040003000240020007至12月,该企业自身处理的污水量y2(吨)与月份x(7x12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a0)其图象如图所示1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=x-x2;7至12月,污水厂处理每吨污水的费用均为2元,该企
9、业自身处理每吨污水的费用均为1.5元(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助若该企业每月的污水处理费用为18000元,请计算出a的整数值(参考
10、数据: 15.2,20.5, 28.4)分析:(1)利用表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系求出即可,再利用函数图象得出:图象过(7,10049),(12,10144)点,求出解析式即可;(2)利用当1x6时,以及当7x12时,分别求出处理污水的费用,即可得出答案;(3)利用今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a一30)%,得出等式12000(1+a%)1.51+(a-30)%(1-50%)=18000,进而求出即可点评:此题主要考查了二次函数的应用和根据实际问题列反比例函数关系式和二次函数关系式
11、、求二次函数最值等知识此题阅读量较大,得出正确关于a%的等式方程是解题关键对应训练4(2012襄阳)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后滑行 m才能停下来点评:此题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键5(2012益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P(1,3)处(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P作x轴的平行线交抛物线于C、
12、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618)请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:2.236,2.449,结果可保留根号)考点:二次函数的应用分析:(1)利用P与P(1,3)关于x轴对称,得出P点坐标,利用待定系数法求出二次函数的解析式即可;(2)根据已知得出C,D两点坐标,进而得出“W”图案的高与宽(CD)的比考点五:二次函数综合性题目例6 (2012自贡)如图,抛物线交x轴于点A(
13、-3,0)、B(1,0),交y轴于点C(0,-3)将抛物线沿y轴翻折得抛物线(1)求的解析式;(2)在的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;(3)平行于x轴的一条直线交抛物线于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径分析:(1)首先求出翻折变换后点A、B所对应点的坐标,然后利用待定系数法求出抛物线的解析式;(2)如图2所示,连接B1C并延长,与对称轴x=1交于点P,则点P即为所求利用轴对称的性质以及三角形三边关系(三角形两边之差小于第三边)可以证明此结论为求点P的坐标,首先需要求出直线B1C的解析式;(3)如图3所示,所求的圆有两个,注意
14、不要遗漏解题要点是利用圆的半径表示点F(或点E)的坐标,然后代入抛物线的解析式,解一元二次方程求出此圆的半径点评:本题考查内容包括二次函数的图象与性质、待定系数法、翻折变换、轴对称的性质、三角形三边关系、圆的相关性质等,涉及考点较多,有一定的难度第(2)问中,注意是“两线段之差最大”而不是“两线段之和最大”,后者比较常见,学生们已经有大量的训练基础,而前者接触较少,但二者道理相通;第(3)问中,首先注意圆有2个,不要丢解,其次注意利用圆的半径表示点的坐标,运用方程的思想求出圆的半径对应训练6(2012遵义)如图,已知抛物线y=ax2+bx+c(a0)的图象经过原点O,交x轴于点A,其顶点B的坐
15、标为(3,)(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使SPOA=2SAOB;(3)在抛物线上是否存在点Q,使AQO与AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由分析:(1)根据函数经过原点,可得c=0,然后根据函数的对称轴,及函数图象经过点(3,)可得出函数解析式,根据二次函数的对称性可直接得出点A的坐标(2)根据题意可得点P到OA的距离是点B到OA距离的2倍,即点P的纵坐标为2,代入函数解析式可得出点P的横坐标;(3)先求出BOA的度数,然后可确定Q1OA=的度数,继而利用解直角三角形的知识求出x,得出Q1的坐标,利用二次函数图象函数的对称性可得出Q
16、2的坐标点评:此题属于二次函数的综合题目,涉及了相似三角形的判定与性质,三角形的面积及一元二次方程的解,综合性较强,需要我们仔细分析,分步解答【聚焦山东中考】1(2012泰安)二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A-3 B3 C-6 D9考点:抛物线与x轴的交点专题:探究型分析:先根据抛物线的开口向上可知a0,由顶点纵坐标为-3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可点评:本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键2(2012滨
17、州)抛物线y=-3x2-x+4与坐标轴的交点个数是()A3 B2 C1 D0分析:令抛物线解析式中x=0,求出对应的y的值,即为抛物线与y轴交点的纵坐标,确定出抛物线与y轴的交点坐标,令抛物线解析式中y=0,得到关于x的一元二次方程,求出方程的解有两个,可得出抛物线与x轴有两个交点,综上,得到抛物线与坐标轴的交点个数点评:此题考查了抛物线与x轴的交点,以及一元二次方程的解法,其中令抛物线解析式中x=0,求出的y值即为抛物线与y轴交点的纵坐标;令y=0,求出对应的x的值,即为抛物线与x轴交点的横坐标3(2012济南)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx小强骑自
18、行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 秒分析:10秒时和26秒时拱梁的高度相同,则A,B一定是关于对称轴对称的点,据此即可确定对称轴,则O到对称轴的时间可以求得,进而即可求得OC之间的时间点评:本题考查了二次函数的应用,注意到A、B关于对称轴对称是解题的关键4(2012菏泽)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销经过调查,得到如下数据:销售单价x(元/件)2030405060每天销售量(y件)500400300200100(1)把上表中x、y的各组对应
19、值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?分析:(1)利用表中x、y的各组对应值作为点的坐标,在坐标系中描出即可,再根据点的分布得出y与x的函数关系式,求出即可;(2)根据利润=销售总价-成本总价,由(1)中函数关系式得出W=(x-10)(-10x+700),进而利用二次函数最值求法得出即可;(3)利用二次函
20、数的增减性,结合对称轴即可得出答案点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数增减性应用等知识,此题难度不大是中考中考查重点内容5(2012青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润
21、,试确定这种许愿瓶的销售单价,并求出此时的最大利润分析:(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同;(2)销售利润=每个许愿瓶的利润销售量;(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润点评:此题主要考查了二次函数的应用;注意结合自变量的取值求得二次函数的最值问题6(2012聊城)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100(利润=售价-制造成本)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013年中考数学专题复习讲座 第十五讲 二次函数的应用学生版 2013 年中 数学 专题 复习 讲座 第十五 二次 函数 应用 学生
限制150内