逻辑学前沿报告向量空间、信念基础的逻辑 (1).pdf





《逻辑学前沿报告向量空间、信念基础的逻辑 (1).pdf》由会员分享,可在线阅读,更多相关《逻辑学前沿报告向量空间、信念基础的逻辑 (1).pdf(74页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、On the Logic of Vector Space ModelsThe basic idea:When one argues for/against B,ones premises A1,A2,.are meantto rationally“push”the receiver“in the direction of”/“away from”B,and they are doing so with a certain“strength”:content is a vector.A1A2BIf the premises manage to do so perfectly,this can b
2、e viewed as adeductive inference(A1,A2,.B)in the logic of vector space models.If they do so approximately,this can be viewed as an inductive inference.AAAAAAAAAAAAAAAAA2A2AAAA1.5AAAAAAAAAAAAA2A2AAAA1.5AAAAAAAAAAAAA2A2AAAA1.5AAAAAAAAAAAAA2A2AAA0.5A1.5AAAAAAAAAAAAA2A2AAA0.5A1.5A1.5AAAB(BA)CC1.7(AB)(BA
3、)C0.7(AB)C1.7(AB)(BA)C0.7A0.7BC1.7(AB)(BA)C0.35A0.35B0.5CAB(BA)CC1.7(AB)(BA)C0.7(AB)C1.7(AB)(BA)C0.7A0.7BC1.7(AB)(BA)C0.35A0.35B0.5CAB(BA)CC1.7(AB)(BA)C0.7(AB)C1.7(AB)(BA)C0.7A0.7BC1.7(AB)(BA)C0.35A0.35B0.5CAB(BA)CC1.7(AB)(BA)C0.7(AB)C1.7(AB)(BA)C0.7A0.7BC1.7(AB)(BA)C0.35A0.35B0.5C1.7(AB)(BA)C0.35A0
4、.35B0.5C1.7(AB)(BA)CD(AB)0.35D0.5CA(BC)(AB)CAABB1.7(AB)(BA)C0.35A0.35B0.5C1.7(AB)(BA)CD(AB)0.35D0.5CA(BC)(AB)CAABB1.7(AB)(BA)C0.35A0.35B0.5C1.7(AB)(BA)CD(AB)0.35D0.5CA(BC)(AB)CAABB1.7(AB)(BA)C0.35A0.35B0.5C1.7(AB)(BA)CD(AB)0.35D0.5CA(BC)(AB)CAABBEBF0.707Now let us make all of that more precise by de
5、veloping the logic and semanticsof vector space models.Plan:1The Basic Language of Vector Space Models2The Basic Logic of Vector Space Models3The Basic Semantics of Vector Space Models4Basic Belief Revision in Vector Space Models5Extensions:Similarity,Induction,Disjunction,Conditionals,.6Interpretat
6、ions:Similarity,Probability,Machine Learning7Application:The Linda Example8Application:The Queen Example9Conclusions and ProspectsThe Basic Language of Vector Space ModelsDefinition of terms:For every real number r,the numeral r of r is a term.Definition of(factual)formulas:Every propositional varia
7、ble piis a formula.If A and B are formulas,their conjunction(AB)is a formula.If A is a formula,its negationA is a formula.The logical verumis a formula.If A is a formula andis a term,thenA is a formula.Definition of equivalence formulas:If A and B are(factual)formulas,then AB is an equivalence formu
8、la.Metalinguistic abbreviations:AB=df(AB)(“Material”implication)=dfThe Basic Logic of Vector Space ModelsThe derivability relation has the following format:hF,Ei CwhereFis a finite multi-set of factual formulas,Eis a set of equivalence formulas,C is a factual formula or an equivalence formula.Struct
9、ural rules:is reflexive,monotonic,and transitive w.r.t.equivalence formulas.satisfies the following restricted form of transitivity w.r.t.factual formulas:F11,.,Fk1,A1B1,.,AmBmF2,F2,A01B01,.,A0nB0nF3F11,.,Fk1,A1B1,.,AmBm,A01B01,.,A0nB0nF3Logical axioms and rules:(when the conclusion is factual,all f
10、actual premises are stated completely)AA(REFL)A(BC)(AB)C(ASS)ABBA(COMM)A A(VER)AA(BOT)(A)A(COMP)1AA(ID)(AB)(A)(B)(DIS1)(+)A(A)(A)(DIS2)A1,.,An,B1C1,.,BmCmA1.An(AGG)A,B1C1,.,BmCm A(for 0)(WEAK)A,BA B/A(SUB)(In particular:A,(BA)B)And finally the only axiom that is perhaps surprising at first glance:(E
11、QUIV)(and“push”the receiver in the same waythat is,not at all.)(AB)(A)(B)(DIS1)(+)A(A)(A)(DIS2)A1,.,An,B1C1,.,BmCmA1.An(AGG)A,B1C1,.,BmCm A(for 0)(WEAK)A,BA B/A(SUB)(In particular:A,(BA)B)And finally the only axiom that is perhaps surprising at first glance:(EQUIV)(and“push”the receiver in the same
12、waythat is,not at all.)(AB)(A)(B)(DIS1)(+)A(A)(A)(DIS2)A1,.,An,B1C1,.,BmCmA1.An(AGG)A,B1C1,.,BmCm A(for 0)(WEAK)A,BA B/A(SUB)(In particular:A,(BA)B)And finally the only axiom that is perhaps surprising at first glance:(EQUIV)(and“push”the receiver in the same waythat is,not at all.)Derivable rules:A
13、1,.,AnBA1,.,An B(for 0)AB,BAABABBA(SYMM)AB,BCAC(TRANS)AAAA,AAA AAAAB,BCACA,(AB)BWhileA,AAAis derivable,this is not derivable:AAA(A single A may not be“strong enough”!),is substructural.There are also surprising inferences,such as:(AB)ABThis is(somewhat)justified in view of:AB(AB)ABABBoth(AB)andAB sh
14、ould reverse the“push”exerted by AB.Lemma0A Proof:1.0A(0+0)A(REFL)(Note that 0=(0+0)!)2.(0+0)A(0A0A)(DIS2)3.0A(0A0A)1.,2.(TRANS)4.(0A0A)(0A)(0A0A)(0A)(REFL)5.(0A0A)(0A)(0A(0A)4.,3.(SUBST0A0A0A)6.(0A(0A(0A)(0A0A)(0A)(ASS)7.(0A(0A(0A)(0A(0A)6.,5.(TRANS)8.(0A(0A)(BOT).9.(0A(0A)8.(SYMM).10.(0A)7.,9.(SUB
15、ST0A(0A)11.(EQUIV)12.(0A)10.,11.(SUBST)13.(0A)0A(VER)14.0A(0A)13.(SYMM)15.0A 14.,12.(TRANS)Lemma A(1)AProof:1.1AA(ID)2.(AA)(BOT)3.0A(LEMMA)4.0A 3.(SYMM)5.(AA)0A 2.,4.(TRANS)6.(1AA)0A 5.,1.(SUBST1AA)7.0A(1AA)6.(SYMM)8.(1)A(1AA)(1)A(1AA)(REFL)9.(1)A(1AA)(1)A0A)8.,7.(SUBST0A1AA)10.(1)A(1AA)(1)A1A)A(ASS
16、)11.(1)A1A)A(1)A(1AA)10.(SYMM)12.(1)A1A)A(1)A0A)11.,9.(TRANS)13.(1+1)A(1)A1A)(DIS2)14.0A(1+1)A(REFL)15.0A(1)A1A)14.,13.(TRANS)16.(0AA)(1)A0A)12.,15.(SUBST0A(1)A1A)17.(A)(1)A)16.,4.(SUBST0A)18.(EQUIV)19.(A)(1)A)17.,18.(SUBST)20.(A)A(VER)21.(A)(A)(COMM)22.(A)A 21.,20.(TRANS)23.A(A)22.(SYMM)24.A(1)A)19
17、.,23.(SUBSTA(1)A)25.(1)A)(1)A(VER)26.A(1)A 24.,25.(TRANS)Derivations like that can be tedious.But ultimately we will see that one can simply infer by vector calculation!Lemma(AB)B(1)AProof:1.(AB)(AB)(REFL)2.(AB)(AB)1.(ABBREV)3.B(1)B(LEMMA)4.(1)B B 3.(SYMM)5.(AB)(A(1)B)2.,4.(SUBST(1)BB)6.(A(1)B)(1)(A
18、(1)B)(LEMMA)7.(1)(A(1)B)(A(1)B)6.(SYMM)8.(AB)(1)(A(1)B)5.,7.(SUBST(1)(A(1)B)(A(1)B)9.(1)(A(1)B)(1)A(1)(1)B)(DIS1)10.(1)A(1)(1)B)(1)(A(1)B)9.(SYMM)11.(AB)(1)A(1)(1)B)8.,10.(SUBST(1)A(1)(1)B)(1)(A(1)B)12.(1)(1)B)(1)(1)B(COMP)13.(1)(1)B1B(REFL)14.(1)(1)B)1B 12.,13.(TRANS)15.1BB(ID)16.(1)(1)B)B 14.,15.(
19、TRANS)17.B(1)(1)B)16.(SYMM)18.(AB)(1)AB 11.,17.(SUBSTB(1)(1)B)19.(1)ABB(1)A(COMM)20.(AB)B(1)A 18.,19.(TRANS)A(1)A(AB)B(1)AppqqABAABroyal:x is royal.king:x is a king.man:x is male.(royalking),(king(royalman)man1.royalking(P1)2.king(royalman)(P2)3.(royalking)(king(1)royal)(LEMMA)4.(king(1)royal)(royal
20、king)3.(SYMM)5.king(1)royal 1.,4.(SUBSTking(1)royalroyalking)6.(1)royalking)(king(1)royal)(COM)7.(1)royalking 5.,6.(SUBST(1)royalkingking(1)royal)8.(royalman)king 2.(SYMM)9.(1)royal(royalman)7.,8.(SUBSTroyalmanking)10.(1)royal(royalman)(1)royalroyal)man(ASS)11.royal(1)royal(LEMMA)12.(1)royal(royalma
21、n)(royalroyal)man 10.,11.(SUBSTroyal(1)royal)13.(royalroyal)(royalroyal)(COM)14.(royalroyal)(BOT)15.(royalroyal)13.,14.(TRANS)16.(EQUIV)17.16.(SYMM)18.(royalroyal)15.,17.(TRANS)19.(royalroyal)18.(SYMM)20.(1)royal(royalman)(man)12.,19.(SUBSTroyalroyal)21.(man)(man)(COM)22.(1)royal(royalman)(man)20.,2
22、1.(TRANS)23.(man)man(VER)24.(1)royal(royalman)man 22.,23.(TRANS)25.man(1)royal(royalman)24.(SYMM)26.man 9.,25.(SUBSTman(1)royal(royalman)The Basic Semantics of Vector Space ModelsDefinitionhV,Viis a vector space model iff(i)V=hV,+,iis a vector space overR,and(ii)Vis a valuation over V.A valuationVov
23、er V is a function that is defined on terms,factual formulas,and equivalence formulas,such that the following is the case:V(r)is the real-valued scalar r.V(pi)is a vector in V.V(AB)=V(A)+V(B).V(A)=V(A).V()is the zero vector0 of V.V(A)=V()V(A).V(AB)=t iffV(A)=V(B)(and f otherwise),Definition(Logical
24、Consequence)A1,.,Am,B1B01,.,BnB0n,.|=C ifffor all vector space modelshV,Vi:ifV(B1B01)=.=V(BnB0n)=.=t,thenif C is an equivalence formula,thenV(C)=t;if C is a factual formula,then there is awith 0 1,such that(V(A1)+.+V(Am)=V(C).E.g.,(royalking),(king(royalman)|=man:ifV(king)=V(royal)+V(man),then 1(V(k
25、ing)V(royal)=V(man).pp6|=q.p|=p but p,q6|=p.(p,q may take one in a different direction than p.),|=is paraconsistent and nonmonotonic with respect to factual formulas.TheoremThe basic logic of vector space models is sound and complete with respect tothe basic semantics of vector space models:hF,Ei C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 逻辑学前沿报告向量空间、信念基础的逻辑 1 逻辑学 前沿 报告 向量 空间 信念 基础 逻辑

限制150内