微积分全英微积分全英 (78).pdf
《微积分全英微积分全英 (78).pdf》由会员分享,可在线阅读,更多相关《微积分全英微积分全英 (78).pdf(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、问题问题 1:(0,)Let arctansin(),|=+=zxyxydz A.(1)B.(1)C.(1)D.(1)+dxdydxdydxdydxdy 22(0,)Anscos()cos(),1 sin()1 sin()(1)|:+=+=zyxyzxxyxxyxyyxyxydzdxdy 答案:A 问题问题 2:()(1,1)(1),A.(2ln2 1)B.(2ln2 1)()C.(2ln2 1)D.2ln2(2ln2 1)|xyxzdzydxdydxdydxdydxdy=+=+2(1,1)Ans:lnln(1)11ln(1)1ln(1)let 1,12ln2 1,(2ln2 1)(2ln2
2、1)()|=+=+=+=+=+=+xxzyyzxxz xyyxyzxxxz yyyxyzzxyxydzdxdy 答案:C 问题问题 3:(1,1)(1,1)31(,)is differentiable at point(1,1),and(1,1)1,2,3,(),(,).()A.45B.48C.51D.54|xffzf x yfxydxf x f x xxdx=3211212121Ans:(1)1,(1,1)(1,1)1,()3()()3(),(,),(,)(,)(,)=3 1 2+3(2+3)=51|=+xxxfffddxxxdxdxxf x f x xf x f x xf x xfx x
3、答案:C 问题问题 4:212222122221222122(,)has a second order continuous partial derivative,(,),A.B.C.D.zf u vzf x xyx yfffxffxyffxyfxff=+12211122212212222Ans:0(0)=+=+zfyfxzfxffy fxfx yxffxyf 答案:B 问题问题 5:222Find the total differential of function(,)determined by equation 2 at point(1,0,1)A.2B.2()C.2D.2=+=+zz
4、x yxyzxyzdxdydxdydxdydxdy 222222222222222(1,0,1)(1,0,1)Ans:21,22.|=+=+=+=+=zzdzdxdyxyyz xyzxzxxy xyzzxyzxyzxz xyzyzyxy xyzzzzdzdxdyxy 答案:A 问题问题 6:2The function(,)determined by the equation(,)0 F is a differentiable function,and 0,A.B.C.D.0y zzz x yFx xzzFxyxyyxz=+=,12221222Ans:1()0(,)0110()+=+=+=+=y
5、zzFFy zxx xxFzx xFFxy xzzzzxyFzFxyzxyxy 答案:C 问题问题 7:2222222Let transformation simplify the equation 60 to 0find the value of A.9B.6C.3D.2uxyzzzzvxayxx yyu va=+=+2222222222222222222222222222Ans22(2)24460(105)(6:=+=+=+=+=+=+zzzzxuu vvzzzzzzzxuvaazzzx yuu vvayuvzzzzaayuu vvzzzzaaaxx yyu v222)06031050=+
6、=+zvaaaa 答案:C 问题问题 8:22It is known that the tangent plane of point on surface 4 is parallel to plane 10.Find A.(1,1,2)B.(2,1,2)C.(2,2,1)D.(1,1,1)=+=PzxyxyzP 0000000000Ans:Let the coordinates of is(,),then the normal vector of the surface at P is(2,2,1)tangent plant parallel to 22102211,12.221=+=Pxy
7、znxyxyzxyxyz 答案:A 问题问题 9:Find the tangent plane equation of surface 22 at points(1,2,0).A.220B.240C.240D.40zzexyxyxyxyxy+=+=+=+=+=Ans:(,)232,2,1The normal vector of surface 23 at points(1,2,0)is(4,2,0)Tangent plane equation:4(1)2(2)0240=+=+=+=+=zzxyzzF x y zzexyFy Fx Fezexynxyxy 答案:B 问题问题 10:22Find
8、the tangent plane equation of surface parallel to plane 220.2A.20B.230C.230D.2230 xzyxyzxyzxyzxyzxyz=+=+=+=+=+=00022002200000000Ans:Let the tangent point is(,),the normal vector of surface at points is(,2,1)2The normal vector of the given plane is(2,2,1)21,22122,1,3.The t=+=+=P xy zxzyPxyxyxzyxyzang
9、ent plane is 2(2)2(1)(3)02230+=+=xyzxyz 答案 D 问题问题 11:222Find the normal equation of surface 2321 at points(1,2,2)122A.146122B.123122C.362122D.521+=+=+=+=+=xyzxyzxyzxyzxyz 222Ans:Let(,)2321(1,2,2)2,(1,2,2)8,(1,2,2)12122normal equation:146=+=+=xyzF x y zxyzFFFxyz 答案:A 问题问题 12:22Find the tangent plane
10、equation of surface parallel to plane 240.A.235B.225C.245D.25zxyxyzxyzxyzxyzxyz=+=+=+=+=+=000220000000Ans:Let the tangent point is(,),The normal vector of surface at points is(2,2,1)2The normal vector of the given plane is(2,4,1)2212411,2,5The tangent p=+=P xy zxzyPxyxyxyzlane is 2(1)4(2)(5)0245+=+=
11、xyzxyz 答案:C 问题问题 13:2222(,),(1,0)A.1B.3C.2D.4xxyxyf x yfexy xy+=+222221Ans:(,)(,0)(1,0)22|=+=+=xyxxxyf x yf xxexy xyfx 答案:C 问题问题 14:23223(),when 0,A.()B.3()C.D.3()xxx yxx yxx yxx yzzeyf xyyzxxexyeexyeeeexye+=+=+23232Ans:()()()3()+=+=+=+=+xxxx yxx yzeyf xyxef xzeyxyezexyex 答案:B 问题问题 15:210(2),A.2B.1C
12、.3D.5|=yxxyzzxyx 222 ln2110Ans:(2)0,()(2ln2)22|时=yxxxxxxxxxyzxyyzxzexxzzx 答案:A 问题问题 16:2(1,)2222(,)ln|sin(),1A.11B.1(1)1C.1(2)1D.12(1)|=+=+ff x yxyxyx y 2222(1,)Ans:1cos()1cos()sin()()11(1)|=+=+=+fyxyxxyfxyxyxyx yxyfx y 答案:B 问题问题 17:23(0,0)(,)is determined by the equation1,A.21B.()31C.(2)31D.3|:+=+=
13、+xyzzz x yexyzdzdxdydxdydxdydxdy 2332323(0,0)Ans:0,01101(23)02301(2)3|代入+=+=+=+=+=+xyzzxyzxyzxyexyzezexyzedxdydzyzdzxzdyxydzdxdydzdzdxdy 答案:C 问题问题 18:22(0,1)The function(,)is differentiable,(,)is determined by the equation(1)(,),A.2B.C.2D.2|:=+=+f u vzz x yxzyx f xz y dzdxdydxdydxdydxdy 22222(0,1)(0
14、,1)Ans:(1)(,)(1)2(,)(,)20,1(1)(,)1202|时+=+=+=+=+=+xzyx f xz yxdzzdxydyx df xz yf xz yxdxxyxzyx f xz yzdzdxdydzdxdy 答案:A 问题问题 19:21112222111222211122(,),(,)has a second order continuous partial derivativeA.()B.()C.2()D.(),=+=+xyxyxyxyxyxyxyzef xy xyf u vzx yexyefxy fxyffefxy fxyffexyefxy ffexy f12222
15、+xyff 1221112222Ans:(,)()=+=+=+xyxyxyxyzef xy xyzyefyfxzexyefxy fxyffx y 答案:A 问题问题 20:22The plane region is surrounded by 3(1),3 and y-axiscalculate3A.(1)1623B.(1)823C.(1)223D.(1)42=DDyxyxx dxdy 2113(1)2222220301122322001222242004013202Ans:3(1)3131sincos (sin)1 1 cos4832116=xxDx dxdydxx dyxxx dxxx d
16、xx dxxx dxttdtxttdtx dxx dxdy3(1)162=D 答案:A 问题问题 21:221111=(,)|1,11,calculate 1A.(1 2)61B.(1 2)21C.(1 2)31D.(1 2)9yDDx yxyxx edxdyeeee 2221222221222001132001210011101Ans:=2=221 331 (|2)311 (|)(1 2)33 is=+=yyyyDDyyyyyx edxdyx edxdyedyx dxey dyy dey eyedyeeeDthe part of where 0Dx 答案:C 问题问题 22:222(,)|2
17、,calculate()8A.53B.52C.452D.25=+DDx yxyxyx xy dxdy 22122201222011224001222200Ans:is symmetric about y-axis0()2 2(2)22224sincos=+=DxxDDDxydxdyx xy dxdyx dxdydxx dyxxx dxxx dxx dxxx dxttdt44014011 cos428152()45=+=Dtdtx dxx xy dxdy 答案:C 问题问题 23:2222(,)|14,0,0 sin()calculate 3A.53B.43C.2D.1=+DDx yxyxyxx
18、ydxdyxy 2222222201Ans:rotational?symmetrysin()sin()=1 sin()21 sin()2+=+=DDDxxyyxydxdydxdyxyxyxydxdydrr dr3 4=答案:B 问题问题 24:22110calculate()1A.(1)2B.11C.(1)31D.(1)4xyyedyedxxeeee 22222222211111100011000111000Ans:()=(1)=+xxyyyyyxxyxyyeedyedxdydxdye dxxxedxdyey dyxe dxe dyye dy1 =(1)2e 答案:A 问题问题 25:1 is
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分全英微积分全英 78 微积分 78
限制150内