微积分全英微积分全英 (74).pdf
《微积分全英微积分全英 (74).pdf》由会员分享,可在线阅读,更多相关《微积分全英微积分全英 (74).pdf(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、问问题题 1:222 1 2LLxyzxyzyzxzdxxdydz+=+=设是柱面与平面的交线,从 轴正向往 轴负向看去为逆时针方向,则曲线积分 222Q1:is the intersection of cylinder 1 and plane.Looking from the positive z-axis to the negative z-axis,it is counter clockwise.calculate.2+=+=LLxyzxyyxzdxxdydz 22222222Ans:1,The projection curve of on plane is 1,counter-cloc
2、kwise direction.The closed region bounded by is denoted as:1.()()22 :+=+=+=+=+=+LLLxyxyzLxOyxyLD xyyyxzdxxdydzx xy dxxdydxdy222 =()()22 =(1)+=LDyyxxydxxdyxy dxdy 问问题题 2:2(,)|1,0,0,0 x y zxyzxyzy dS=+=设则 2Q2:(,)|1,0,0,0calculate =+=x y zxyzxyzy dS 1122200Ans:(,)|1,0,033312=+=yDDx yxyxyy dSydxdydyy dx
3、 问问题题 3:222223 (0,0)2 (2,0)4 (0,2)3(2)LLxyxxyIx ydxxxy dy+=+=+已知 是第一象限中从点沿圆周 到点再沿圆周 到点的曲线段,计算曲线积分 222223Q3:is the curve in the first quadrant from point(0,0)to point(2,0)along the circumference 2 and then point(2,0)to point(0,2)along the circumference 4calculate 3(2+=+=+LxyxxyIx ydxxxy)Ldy 111232323
4、Ans:Take the equation of the directed line as x=0,starting point(0,2)and ending point(0,0)The plane area enclosed by and is D.3(2)3(2)3(+=+=+LL LLLLIx ydxxxy dyx ydxxxy dyx ydxx111233202322)3(2)(2)(3)=23(2)(2)442+=+=+=LL LDDLxy dyx ydxxxy dyxxyx y dxdyxxdxdyx ydxxxy dyy dyI 问问题题 4:(1,0,0)(0,1,1)z 02
5、.(1)(2)LABLzz=设直线过,两点,将绕轴旋转一周得到曲面,与平面,所围成的立体为求曲面的方程求 的形心坐标 Q4:The straight line passes through(1,0,0)and(0,1,1),and is rotated around the z-axis for 360 degree to obtain the surface The solid formed by and 0,2 is.(1)Find the equation of su=LABLzzrface(2)Find the centroid coordinates of 2222222000002
6、22Ans:1(1).The straight line is 1111,:(1):221(2)Let the centroid coordinates of is(,)From Symmetry,we have 0Let(,)|221=+=+=+xxyzLxz yzxyzzxyzzxyzxyDx yxyzzdx222002200(221)10 =314(221)3757the centroid coordinates of is(0,0,)5=+=+=xDdydzdzdxdyzzdzzdxdydzzzzdzzdxdydzzdxdydz 问问题题 5:2233 (1)(1)(1)(1)zxyz
7、Ixdydzydzdxzdxdy=+=+设为曲面的上侧,计算曲面积分 2233Q5:is the upper side of the surface (1)calculate(1)(1)(1),=+=+zxyzIxdydzydzdxzdxdy 12211332233Ans:Let is the lower side of surface1,1Let the area enclosed by and is.(1)(1)(1)3(1)3(1)11,0(1)(1)(1)+=+=+=+xyzxdydzydzdxzdxdyxydzdxdyzdzxdydzydzdxzdxdy122112220000(33
8、7)(37)4=+=+=rxdxdydzydxdydzIxydxdydzddrrrdz 问问题题 6:222222 2,(0,2,0),(0,2,0)()()LLzxyzxABIyz dxzxy dyx y dz=+已知曲线的方程:起点为终点为计算 222222Q6:2,starting point (0,2,0),ending point:(0,2,0)calculate()()::=+LL zxyzxABIyz dxzxy dyx y dz 112211222Ans:Let straight line from A to BThe projection curves of and on t
9、he plane are:22(0),clockwise;:0,:22The area enclosed by and is,()():,+=+LLLxOylxyxlxyllD zxIyz dxzxy dyx11112222222222 ()()()2 (12)12+=+=+=+=LL LLllllDDy dzyx dxxxy dyx y dxydyyxx ydxydyx y dxdydxdy 问问题题 7:2222=(1)23xyzIxdydzydzdxxdxdy+=+设有界区域 由平面与三个坐标平面围成,为 整个表面的外侧,计算曲面积分 2Q7:The bounded region is
10、surrounded by plane 222 and,three coordinate planes.is the outside of,calculate=(1)23+=+xyzxoy yoz zoxIxdydzydzdxxdxdy 12(1)1200012(1)00120Ans:=(21)1112 1 1323 (1)21 (1)1211121232+=+=yxxxIxdxdydzdxdydzxdxdydzdxdyxdzydxxxdyxxdxI 问问题题 8:222 1 0 LLxyzxyzxyds+=+=设为球面与平面的交线,222Q8:is the intersection of s
11、phere 1 and plane 0+=+=LLxyzxyzxyds 2222222Ans:10,have rotation symmetry1()311 ()()32 :,+=+=+=+LLLLLLxyzxyzx y zxydsxzdsyzdsyzxyxz dsyxzxyzds21 0161 263=Lds 问问题题 9:22 1 0 zLLxyyzzdxydy+=+=+=设为柱面与平面的交线,从z轴正向往 轴负向看去为逆时针方向,则曲线积分 22Q9:is the intersection of cylinder 1 and plane 0.From the positive z-axi
12、s to the negative z-axis,its counter clockwise.Calculate+=+=+LLxyyzzdxydy222222Ans:1,The projection on xoy plane is:1,counter-clockwise direction.0The closed region enclosed by is:1.0=:+=+=+=+=+=LlDxyLl xyyzlD xyyzzyIzdxydzydxydydxdy 问问题题 10:x+y+z=1(23)xyz dxdydz+=设由平面与三个坐标平面所围成的空间区域,则 Q10:is the sp
13、ace area enclosed by plane 1 and three coordinate planes.Calculate(23)+=+xyzxyz dxdydz Ans:It can be seen from the symmetry of rotatio:=(23)6:01,(,)(),()is the plane region obtained by making a plane section perpendicular to the=+=xdvydvzdvIxyz dvzdvzx yD z D z2111223000()-axis through any point in
14、0,1.1Its area is(1).2111(1)(2)22241=4=+=D zzzzzdvzdzdxdyzzdzzzz dzI 问问题题 11:2222(,)|1,1LxdxaydyDx yxyxya=+=若曲线积分在区域 内与路径无关则 2222Q11:The curve integral is independent of the path in the region(,)|1.1Find=+LxdxaydyDx yxyxya22222222222222Ans:The curve integral is independent 1of the path in the region(
15、,)|1.=1122,(1)(1)it is independent of the path=,+=+=+LxdxaydyxyDx yxyxayPQxyxyPxyQaxyyxyxxyQx1=Pay 问问题题 12:2222222 (,)9.1);2)Szxyzxx y zxyzCCxOySM=+=+设薄片型物体 是圆锥面被柱面割下的有限部分,其上任一点的密度为记圆锥面与柱面的交线为求 在平面上的投影曲线的方程求 的质量 222222Q12:The thin object is a finite part of the cone cut by the cylinder 2.The density
16、 of any point above is(,)9.C is the intersection line of the cone and the cylinder.1)Find=+=+Szxyzxx y zxyz the equation for the projection curve of C on plane;2)Finding the mass of.xoyMS 2222222222Ans:1),Eliminate,the projection cylinder of C on xoy plane is 202.So the equation of projection curve
17、is 22)Because the point density of is(,)9:=+=+=+=+zxyCzzxzxyxxyxSx y zxyz22222222222222cos222202,So the mass of S is=9.The projection area of on plane is(,)|2.92()1()()181864+=+=+=+=SDDMxyz dSSxoyDx yxyxxyMxydxdyxyxyxy dxdydr dr 问问题题 13:22331 33,=(2)xyzIxdydzydzdxz dxdy=+设 是曲面的前侧 计算曲面积分 2233Q13:is t
18、he front side of the surface 1 33 and calculates the surface integral=(2).=+xyzIxdydzydzdxz dxdy 122113322Ans:331 is the back of the part bounded by equation.0 is the solid surrounded by and.From Gauss formula,(2)(1 33).Let cos,sin,(1+=+=+=yzxxdydzydzdxz dxdyyzdxdydzyrzr21321 32223000322303122222300
19、3333)(1 3)2(1 3)1 3214Let 1 32(1 3)1 3=(2)34514(2)=0+=+=+=+=+=ryzdxdydzddrrrdxrrr drrtrrr drtt dtxdydzydzdxz dxdyI45 问问题题 14:2222244(0),44xyzzxz dxdy+=设 是曲面的上侧则 22222Q14:is the upper side of surface 44(0).calculate 44+=xyzzxz dxdy 2222222200Ans:The projection area of on plane is(,)|4.444(4)32|2sin3=
20、+=xyxyxyDDxoyDx yxyxz dxdyxxydxdyy dxdydr rdr 问问题题 15:2222(14),(),=()2()2()xyxyf xIxf xyxy dydzyf xyyx dzdxzf xyz dxdy+设 为曲面z=的下侧是连续函数 计算 2222Q15:is the lower side of(14),and()is a continuous function.Calculate=()2()2()=+zxyxyf xIxf xyxy dydzyf xyyx dzdxzf xyz dxdy 2222222222222222222222220Ans:Becau
21、se the normal vector of is(,)12=()()22()22()Let(,)|14,()()1()()12()()()+=+=+=+=+=+=Dx yzIxyzf xyxyz dSxydSxyDx yxyzzxyxyxyxyIxydxdydr21143=dr 问问题题 16:2222224,2,44LxyxyIdxdy Lxyxyxy+=+=+计算曲线积分是方向为逆时针方向.222222Q16:4Calculate,:2,and the direction is counter clockwise44+=+=+.LxyxyIdxdy L xyxyxy1122112222
22、22222222Ans:Let 4=1,the direction is clockwise;The plane area enclosed by to is marked as.44444 =4444According to:+=+LL LLLxyLLDxyxyIdxdyxyxyxyxyxyxydxdydxdyxyxyxyxy1112222222222222241Greens formula44()()0,4444444(4)()()(4),+=+=+=+=L LDLLxyxyxyxyxydxdydxdyxyxyxxyyxyxyxyIdxdyxyxyxy dxxy dyxyxydxdyxy
23、问问题题 17:222()(1)(01)0,xyzzzz+=设 是由锥面与平面围成的椎体求 的形心坐标 222Q17:is the vertebral body surrounded by cone()(1)(01)and plane 0.Finding the centroid coordinates of+=xyzzzz00002221120010Ans:Let the centroid coordinates of is(,).Because is symmetric about the plane=0when 01,Let(,)|()(1)(1)3=+=zzDxyzyozxzDx yx
24、yzzVdxdydzdzdxdyzdzydxdydzdz1210001201120000(sin)(cos,sin)(1)12(1)12141 4the centroid coordin令=+=zzzDDydxdydzdzrrdrxryzrzzdzzdxdydzdzzdxdyzzdzydxdydzyVzdxdydzzV1 1ates of is(0,).4 4 问问题题 18:2222(),1xz dvzxyzxy+=+=计算三重积分其中 是由曲面与围成的区域2222Q18:Calculate(),is the area bounded by surfaces and 1.+=+=xz dvz
25、xyzxy2122440000Ans:is symmetric about the plane011cossin2sin248()8|=+=yozxdvzdvddrrdrxz dv 问问题题 19:2222(),04yzxyz dvzxz=+=求其中 是由曲面绕 轴旋转一周而成的曲面与所围成的立体 222Q19:Calculate(),is a three-dimensional region formed 2by a surface rotating around the-axis and 4.0+=xyz dvyzzzx 422422220000Ans:256()()43+=+=zxyz
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分全英微积分全英 74 微积分 74
限制150内