(6.6.1)--6频域篇三小结与习题讲解一.pdf
《(6.6.1)--6频域篇三小结与习题讲解一.pdf》由会员分享,可在线阅读,更多相关《(6.6.1)--6频域篇三小结与习题讲解一.pdf(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、频域篇三 小结与习题讲解一 Signals and Systems 第9章 复习考研篇 视频105 信号与系统分析方法 频域篇三_小结与习题讲解 离散离散时间时间信号信号频域频域分析分析 周期信号频域分析周期信号频域分析 周期信号的傅里叶级数表示周期信号的傅里叶级数表示 典型周期信号的傅里叶级数典型周期信号的傅里叶级数 傅里叶级数的性质傅里叶级数的性质 非周期信号频域分析非周期信号频域分析 非周期信号的傅里叶变换非周期信号的傅里叶变换 典型信号的傅里叶变换典型信号的傅里叶变换 周期信号的傅里叶变换周期信号的傅里叶变换 傅里叶变换的性质傅里叶变换的性质 21【习题习题5.21】的的奈奎斯特率奈奎
2、斯特率为为 ,其中,其中 ,。当当希望希望 通过通过某个滤波器恢复某个滤波器恢复出出 的话的话,该滤波器的频率特,该滤波器的频率特性需要具备怎样的幅频特性与相频特性。性需要具备怎样的幅频特性与相频特性。频域篇三_小结与习题讲解 【解解】F p tPkkss()(j)()x t()0y tx t p t()()(1)p ttkTk()()y t()x t()T/20F q tp tQkkss()(1)(j)()ej其中其中 Ts2F q tp tQkkss()(1)(j)()ej 1【解解】【习题习题6.1】一个离散一个离散时间实周期信号时间实周期信号 ,其基波,其基波周期为周期为 ,的非的非
3、零零傅立叶级数傅立叶级数系数为系数为 ,将,将 表示表示为为 的的形式。形式。x n 基波角频率基波角频率 频域篇三_小结与习题讲解 N/5/220 x nakNkkn ej0 x n、aaaaa1e2e02244/3/6*j*j nnnnx nnnnn535612sin4sin5824565312cos4cos84 1 eeee2ee2ee/5)j4(2/3/5)j/3j4(2/5)j/6j2(2/5)j/6j2(2 jN5 x nAknkkk sin()50 x n 2cos()sin 2【解解】【习题习题6.2】计算离散时间信号计算离散时间信号 的的傅里叶傅里叶级数级数系数。系数。频域篇
4、三_小结与习题讲解 Nax nnNkkn e1j0 x nnmnmm 4 4 8 14 Nax nx nx nnNnnkknknknk444 e e e48e111140222jjjj30基波周期基波周期 ,基波角频率为基波角频率为 N220非零傅里叶级数非零傅里叶级数系数为系数为、aaaaaaaa112j31 2j26370415N4 3【解解】【习题习题6.3】是是一个奇对称一个奇对称的离散的离散时间时间实实周期信号,基波周期为周期信号,基波周期为 ,傅立叶傅立叶级数系数为级数系数为 ,已知,已知 ,确定,确定 、与与 的的值值。ak基波基波周期周期 频域篇三_小结与习题讲解 N7aakk
5、 Nm+、aaaj2 j3j151617、-aaaaaaa0j2 j3j0112233N7实实奇信号奇信号 x n a0a1a2a3aakkm+7 虚奇频谱虚奇频谱 x n ak、aaaaaaj2 j3j115216317 4【解解】【习题习题6.4】周期序列周期序列 与与 具有公共周期具有公共周期 ,傅里叶级数系数分别傅里叶级数系数分别为为 与与 ,其中,其中 、,确定,确定 的的傅立叶级数傅立叶级数系数系数 。bk 频域篇三_小结与习题讲解 akx n 1Fg nx n x ncabablNlklk llk lS 0123aaaa221110312bbbb10123g nx n x n 1
6、2ckcccc=60123x n 2N4bbbba baba ba bkkkkkkkk221230112233 5【解解】【习题习题6.5】考虑三个基波周期为考虑三个基波周期为 的的离散时间周期信号:离散时间周期信号:(1)求求 的的傅立叶级数系数傅立叶级数系数 。(2)求求 的的傅立叶级数系数傅立叶级数系数 。(3)利用利用离散时间傅立叶级数的相乘性质,求离散时间傅立叶级数的相乘性质,求 的的傅立叶级数系数傅立叶级数系数 。(4)直接直接求求 的的傅立叶级数系数傅立叶级数系数 。基波角频率基波角频率 频域篇三_小结与习题讲解 N/3/20 、x nny nnz nx n y n/4)/6/6
7、)sin(2 1cos(2N6 x nnnn22/6)1ee 1 cos(21166jj22(1)akx n y n bkz n ckz n ck;、aaaaaaaakkm21010112346 5【解解】【习题习题6.5】考虑三个基波周期为考虑三个基波周期为 的的离散时间周期信号:离散时间周期信号:(1)求求 的的傅立叶级数系数傅立叶级数系数 。(2)求求 的的傅立叶级数系数傅立叶级数系数 。(3)利用利用离散时间傅立叶级数的相乘性质,求离散时间傅立叶级数的相乘性质,求 的的傅立叶级数系数傅立叶级数系数 。(4)直接直接求求 的的傅立叶级数系数傅立叶级数系数 。基波角频率基波角频率 频域篇三
8、_小结与习题讲解 N/3/20 y nnnn2 j2 j/4)eeee/6 sin(2114466jj22、x nny nnz nx n y n/4)/6/6)sin(2 1cos(2N6(2)akx n y n bkz n ckz n ck;、bbbbbbbbkkm22ee011110234644jj 5【解解】【习题习题6.5】考虑三个基波周期为考虑三个基波周期为 的的离散时间周期信号:离散时间周期信号:(1)求求 的的傅立叶级数系数傅立叶级数系数 。(2)求求 的的傅立叶级数系数傅立叶级数系数 。(3)利用利用离散时间傅立叶级数的相乘性质,求离散时间傅立叶级数的相乘性质,求 的的傅立叶级
9、数系数傅立叶级数系数 。(4)直接直接求求 的的傅立叶级数系数傅立叶级数系数 。基波角频率基波角频率 频域篇三_小结与习题讲解 N/3/20 、x nny nnz nx n y n/4)/6/6)sin(2 1cos(2N6F z nx n y ncaba ba ba baba ba blklk lkkkkkkS 2221101122333(3)akx n y n bkz n ckz n ck、ccccc2424cosee1110112244*jj 5【解解】【习题习题6.5】考虑三个基波周期为考虑三个基波周期为 的的离散时间周期信号:离散时间周期信号:(1)求求 的的傅立叶级数系数傅立叶级数
10、系数 。(2)求求 的的傅立叶级数系数傅立叶级数系数 。(3)利用利用离散时间傅立叶级数的相乘性质,求离散时间傅立叶级数的相乘性质,求 的的傅立叶级数系数傅立叶级数系数 。(4)直接直接求求 的的傅立叶级数系数傅立叶级数系数 。频域篇三_小结与习题讲解 、x nny nnz nx n y n/4)/6/6)sin(2 1cos(2N6nnz nx n y nnnn2/4)/4)sin(/6/4)sin(4/6sin(21/4)/6/6)sin(2/4)cos(2/6 sin(2(4)akx n y n bkz n ckz n ck、ccccc2424cosee1110112244*jj 6【解
11、解】【习题习题6.6】求下列周期信号求下列周期信号 的的傅里叶级数表示:傅里叶级数表示:(1)(2),且,且基波周期为基波周期为 (3),且基波周期为且基波周期为 (4)如图如图(a)所示所示。(5)如图如图(b)所示所示。(6)如如图图(c)所示。所示。频域篇三_小结与习题讲解 x nnn/2)/3)cos(sin(2x nnnnnnnnn4 j4 j4 j4 jeeee111122/6)/6)sin(/2)sin(7/3)cos(sin(211/6/6j7/6j/6j7j7x n(1)x nnn/4),03 1 sin(x n N 4x nnn 1sin(/4),011N12 x n x
12、n N12/60;、aaaaaaaaaaaaaakkm4j4j=011117502346891012*6【解解】频域篇三_小结与习题讲解 kankknkkn24221cos1112241+1e+0+1e1114/4)e1 sin(122jj304j32(2)Nax nnNkNkn e1j2【习题习题6.6】求下列周期信号求下列周期信号 的的傅里叶级数表示:傅里叶级数表示:(1)(2),且,且基波周期为基波周期为 (3),且基波周期为且基波周期为 (4)如图如图(a)所示所示。(5)如图如图(b)所示所示。(6)如如图图(c)所示。所示。x nnn/2)/3)cos(sin(2x n x nnn
13、/4),03 1 sin(x n N 4x nnn 1sin(/4),011N12x n x n 6【解解】频域篇三_小结与习题讲解 kk1 e1 ej/12j/124646jjankkkkkknnnnnnkkknkkn1 e1 e1 e122j2j+11 e1 1 e1 1 e122j2jee+e11112/4)e1 sin(146466jjj)2)j(32j(3j 200064646jjj111111012j112(3)Nax nnNkNkn e1j2【习题习题6.6】求下列周期信号求下列周期信号 的的傅里叶级数表示:傅里叶级数表示:(1)(2),且,且基波周期为基波周期为 (3),且基波
14、周期为且基波周期为 (4)如图如图(a)所示所示。(5)如图如图(b)所示所示。(6)如如图图(c)所示。所示。x nnn/2)/3)cos(sin(2x n x nnn/4),03 1 sin(x n N 4x nnn 1sin(/4),011N12x n x n 方法方法1:6【解解】频域篇三_小结与习题讲解 ankkkkkkkkknkkn222+1+e+e+1e+1e111222121+1e+1e+e+1e+2e111112/4)e1 sin(16666jjjj1198766666jjjjj6543012j112(3)Nax nnNkNkn e1j2【习题习题6.6】求下列周期信号求下列
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6.6 频域篇三 小结 习题 讲解
限制150内