微积分全英微积分全英 (35).pdf
《微积分全英微积分全英 (35).pdf》由会员分享,可在线阅读,更多相关《微积分全英微积分全英 (35).pdf(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、12.2 Partial DerivativesRecall knownDefinition of Derivative0The derivative of a function at is the following limit:fx0000()()()limxf xxf xfxx+=Derivative:the rates of change Recall:Derivative of =()in 3 stepsStep3Step2Step10limxzzx =Find limit:z()()f xxf xxx+=Find ratio:z()()f xxf x=+Find increment
2、:Derivative to partial derivative=,function of two variables,=,0function of one single variable ,0=0For(,):partial derivative with respect to at(0,0)For():derivative at 0=0if is fixed as and has the increment ,then has (,)zf x y=xx0yyDefinitionDefinition of partial derivative the corresponding parti
3、al incrementIf the limit0000(,)(,)=+xzf xx yf x yexists,is defined in some neighborhood of the point (,)zf x y=00(,),xy000000(,)(,)limlim +=xxxzf xx yf xyxxDefinitionDefinition of partial derivative Denote itor 00000000|,|,|or(,)x xx xxx xxy yy yy yzfzfx yxx=00(,).xyat the pointxthen it is called th
4、e partial derivative of with respect to(,)zf x y=DefinitionDefinition or,xzfzxx(,)xfx yIf has the partial derivative with respect toat any point(,)zf x y=xNote:The result is still a function of two variables and .xyof the domain,Dthen denote the partial derivative with respect to xDefinitionDefiniti
5、on 000000(,)(,)limlim +=yyyzf xyyf xyyyor,00yyxxyz=,00yyxxyf=,00yyxxyz=).,(00yxfyDenote itat is given 00(,)xySimilarly,the partial derivative of with respect to (,)zf x y=yDefinitionor,yzfzyy(,).yfx y(,)zf x y=with respect to .The notations are Similarly,define the partial derivative of the function
6、yDefinition Note:,is a function of two variables,Calculation MethodIdea:Such as,findonly need put as a constant,y(,)xfx ythen make use of the derivative method of the function of one variable with changeablexNote:Partial derivative of a multivariate function does not need a new calculation method.Ex
7、ample 1:Calculation questionFind the partial derivative of about x.32yfxex y=+(,)xfx y=ye223x y+Example 2If,find and .(0)yzx x=zxzy,1=yyxxzxxyzyln=Tips:When finding the partial derivative of one variable,treat the other variables as constants Example 3If ,prove .pVRT=1pVTVTp=Proof:;2VRTVp=;pRTV=;RVp
8、T=RTpV=RTVp=pVTR=pTTVVp2VRT pR RV.1=pVRT=Note:The sign of the partial derivative just whole mark not the quotient of the numerator and the denominatorExample 4(,).f x yIf 22(,)(0,0),(,)0(,)(0,0).xyx yxyf x yx y+=find partial derivatives of(1)When(,)(0,0),x y y222)(yx+)(22yx+xxy 2 ,)()(22222yxxyy+=(,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分全英微积分全英 35 微积分 35
限制150内