数据库文化基础 (5).pdf
《数据库文化基础 (5).pdf》由会员分享,可在线阅读,更多相关《数据库文化基础 (5).pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Linear Independence3rdweek/Linear AlgebraObjectives of This Week2The goal is to understandLinear independenceUniqueness of a solution in a linear systemSubspace,basis,and dimensionColumn space and rank 3 Recall the matrix equation of a linear system:Or,a vector equation is written as Recall:Linear S
2、ystem6065551+5.55.06.02+1013=66747811+22+33=Person IDWeightHeightIs_smokingLife-span160kg5.5ftYes(=1)66265kg5.0ftNo(=0)74355kg6.0ftYes(=1)78605.51655.00556.01123=667478x =x =4 The solution exists only when Span 1,2,3.If the solution exists for =,when is it unique?It is unique when 1,2,and 3are linea
3、rly independent.Infinitely many solutions exist when 1,2,and 3are linearly dependent.Uniqueness of Solution for =6065551+5.55.06.02+1013=66747811+22+33=5(Practical)Definition:Given a set of vectors v v1,v v,check if v vcan be represented as a linear combination of the previous vectors v v1,v v2,v v1
4、for =1,e.g.,v v Span v v1,v v2,v v1for some =1,?If at least one such v vis found,then v v1,v v is linearly dependent.If no such v vis found,then v v1,v v is linearly independent.Linear Independence6(Formal)Definition:Consider 1v v1+2v v2+v v=.Obviously,one solution is =12=000,which we call a trivial
5、 solution.v v1,v vare linearly independent if this is the only solution.v v1,v vare linearly dependent if this system also has other nontrivial solutions,e.g.,at least one being nonzero.Linear Independence7 If v v1,v vare linearly dependent,consider a nontrivial solution.In the solution,lets denote
6、as the last index such that 0.Then,one can write=11 11,and safely divide it by,resulting in v v=1v v1 1v v1 Span v v1,v v2,v v1which means can be represented as a linear combination of the previous vectors.Two Definitions are Equivalent8 Given two vectors 1and 2,Suppose Span 1,2 is the plane on the
7、right.When is the third vector 3linearly dependent of 1and 2?That is,v v3 Span v v1,v v2?Geometric Understanding of Linear Dependencev v22v v23v v2v v12v v1x x=2v v1+3v v29 A linearly dependent vector does not increase Span!If v v3 Span v v1,v v2,then Span 1,2=Span 1,2,3,Why?Suppose 3=1v v1+2v v2,th
8、en the linear combination of 1,2,3can be written as 1v v1+2v v2+3v v3=1+1v v1+1+1v v2which is also a linear combination of v v1,v v2.Linear Dependence10 Also,a linearly dependent set produces multiple possible linear combinations of a given vector.Given a vector equation 1v v1+2v v2+3v v3=,supposeth
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据库文化基础 5 数据库 文化 基础
限制150内