逻辑、计算和博弈 (4).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《逻辑、计算和博弈 (4).pdf》由会员分享,可在线阅读,更多相关《逻辑、计算和博弈 (4).pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 LOGIC,COMPUTATION AND GAMES Update with True Information,Picture epistemic model M,s group information state actual world s(seen as such by us as modelers)learning that is true eliminates all -worlds from M s to M|s hard information Update with True Information,Words event!of receiving true new inf
2、ormation is true at actual world,perhaps at others public announcement(or public silence),or just as well public observation(needs no words)update to submodel M|with domain t M|M,t|=simplest case:many other informational events Aside:natural language:“saying that ”,which information?listeners decide
3、 themselves on strength of uptake Three Delicate Dynamic Phenomena not just announcing facts communicating ignorance can be informative:Muddy Children learn facts by learning about their ignorance typical for dynamics:order matters !Kyou p;!p different effect from !p;!Kyou p self-refuting Moore sent
4、ences !(Kp p)may give true information,but you cannot know Kp p Public Announcement Language&Semantics simple pilot system for richer dynamic-epistemic logics PAL language grammar of multi-agent epistemic logic plus !pKp,!(p s)(K1q K2r),!(K1p !qK2r)K3K1s PAL semantics M,s|=!iff if M,s|=,then M|,s|=n
5、ote evaluation in several models at same time PAL Axiom System In technical settings,we often write modal box for K axiom system for PAL 1 all proof principles of multi-agent S5 2 all proof principles of basic modal logic for!plus RE:if|,then|()()3 recursion axioms for postconditions in!:Equivalent
6、Formulation if you do not like the“if is true”conditions use existential dynamic modality :=!recursion axioms once more p (p)()()()K (K()!()(!)Soundness Theorem All provable formulas of PAL are valid.Proof Check what the axioms say Recursion Axiom for New Knowledge M s !M|s M t s (t !Derivations 1 !
7、pKp (p K(p !pp)(p K(p (p p)(p KT)T 2 K(Kp p)KKp Kp Kp Kp T 3 T !T (!T)(T)(T)4 figure this out for yourself&prove Computing Weakest Preconditions there need not be a unique initial model for a given scenario weakest precondition for actions to achieve stated effect Three Cards one possible version “c
8、ards”(R1 W2 B3)!B2!B1K3(K1”cards”K2”cards”K3”cards”)recursion axioms successively compute one epistemic formula as the precondition natural language sometimes says it more economically interplay natural and formal languages huge topic in itself Non-Valid Principles easy to give counterexamples for t
9、he following with concrete formulas and concrete epistemic models !()set =p,=Kp model 1 p-2 p at world 1:!pKp,p,Kp,(p Kp)are true !()set =p,=KBq KBq,=KAq model 1 p,q -A-2 p,q -B-3 p,q At 1:!p!(KBq KBq)KAq false,!(p (KBq KBq)Kaq true also invalid(try yourself)!,!,!Completeness Theorem The provable th
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 逻辑、计算和博弈 4 逻辑 计算 博弈
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内