(3.6)--3.8-SoftAlgebrasandOptimalSoftAl.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《(3.6)--3.8-SoftAlgebrasandOptimalSoftAl.pdf》由会员分享,可在线阅读,更多相关《(3.6)--3.8-SoftAlgebrasandOptimalSoftAl.pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.83.8 Soft AlgebraSoft Algebras s&Optimal Soft AlgebrasOptimal Soft Algebras Soft algebraSoft algebras s A A soft algebra soft algebra is a is a dual lattice dual lattice with with boundedness boundedness and and distributivitydistributivity.=+.CompletenessCompleteness Let Let(,)be a lattice.If eac
2、h nonempty be a lattice.If each nonempty subset of subset of has both has both a a supremum supremum and an and an infimuminfimum,then,then(,)is called a is called a completecomplete lattice.lattice.Theorem Theorem 1 1 If If(,)is a complete lattice,then it is bounded.is a complete lattice,then it is
3、 bounded.Proof Proof Because Because ,we writewe write =,=.,.(,)is bounded.is bounded.Theorem Theorem 2 2 Let Let,be a complete lattice.Suppose be a complete lattice.Suppose,are nonempty subsets of are nonempty subsets of,and,and ,thenthen ,wherewhere =,=.Prove that if Prove that if ,then,then .Proo
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.6 3.8 SoftAlgebrasandOptimalSoftAl
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内