数据库文化基础 (9).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数据库文化基础 (9).pdf》由会员分享,可在线阅读,更多相关《数据库文化基础 (9).pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Eigenvalue and Eigenvector5thweek/Linear AlgebraObjectives of This Week2The goal is to understandEigenvectors and eigenvaluesNull spaceCharacteristic equationFinding all eigenvalues and eigenvectors3Eigenvectors and Eigenvalues Definition:An eigenvector of a square matrix is a nonzero vector such th
2、at =for some scalar In this case,is called an eigenvalue of,andsuch an is called an eigenvector corresponding to.4Transformation Perspective Consider a linear transformation x x=x x.If x x is an eigenvector,then x x=x x=,which means the output vector has the same direction as x x,but the length is s
3、caled by a factor of.Example:For =2653,an eigenvector is 11since x x=x x=265311=88=811x x=8 8=8115Computational Advantage Which computation is faster between 265311and 811?6Eigenvectors and Eigenvalues The equation =can be re-written as =is an eigenvalue of an matrix if and only if this equation has
4、 a nontrivial solution(since should be a nonzero vector).7Eigenvectors and Eigenvalues =The set of all solutions of the above equation is the null space of the matrix ,which we call the eigenspace of corresponding to.The eigenspace consists of the zero vector and all the eigenvectors corresponding t
5、o,satisfying the above equation.8Null Space Definition:The null space of a matrix is the set of all solutions of =called a homogeneous linear system.We denote the null space of as Nul.For =12,should satisfy the following:1=0,2=0,=0 That is,should be orthogonal to every row vector in.9Null Space is a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据库文化基础 9 数据库 文化 基础
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内