全等三角形问题中常见的辅助线——倍长中线法.doc
《全等三角形问题中常见的辅助线——倍长中线法.doc》由会员分享,可在线阅读,更多相关《全等三角形问题中常见的辅助线——倍长中线法.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全等三角形问题中常见的辅助线倍长中线法ABC中,AD是BC边中线方式1:直接倍长,(图1): 延长AD到E,使DE=AD,连接BE方式2:间接倍长1) (图2)作CFAD于F,作BEAD的延长线于E, 连接BE 2) (图3)延长MD到N,使DN=MD,连接CD【经典例题】例1已知,如图ABC中,AB=5,AC=3,则中线AD的取值范围是_.(提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边)例2:已知在ABC中,AB=AC,D在AB上,E在AC的延长线上, DE交BC于F,且DF=EF. 求证:BD=CE.(提示:方法1:过D作DGAE交BC于G,证明DGFCEF方法2:过E作EG
2、AB交BC的延长线于G,证明EFGDFB方法3:过D作DGBC于G,过E作EHBC的延长线于H,证明BDGECH)例3、如图,ABC中,E、F分别在AB、AC上,DEDF,D是中点,试比较BE+CF与EF的大小.变式:如图,AD为的中线,DE平分交AB于E,DF平分交AC于F. 求证:(提示:方法1:在DA上截取DG=BD,连结EG、FG, 证明BDEGDE DCFDGF所以BE=EG、CF=FG利用三角形两边之和大于第三边_D_F_C_B_E_A方法2:倍长ED至H,连结CH、FH,证明FH=EF、CH=BE,利用三角形两边之和大于第三边)_D_F_C_B_E_A例4:已知在ABC中,AD是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 问题 常见 辅助线 中线
限制150内