知识讲解-二项式定理(理)(基础).doc
《知识讲解-二项式定理(理)(基础).doc》由会员分享,可在线阅读,更多相关《知识讲解-二项式定理(理)(基础).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 二项式定理 【学习目标】1理解并掌握二项式定理,了解用计数原理证明二项式定理的方法 2会用二项式定理解决与二项展开式有关的简单问题【要点梳理】要点一:二项式定理1.定义一般地,对于任意正整数,都有:(),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做的二项展开式。式中的做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:,其中的系数(r=0,1,2,n)叫做二项式系数,2二项式(a+b)n的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n字母a降幂
2、排列,次数由n到0;字母b升幂排列,次数从0到n,每一项中,a,b次数和均为n;3.两个常用的二项展开式:()要点二、二项展开式的通项公式二项展开式的通项:()公式特点:它表示二项展开式的第r+1项,该项的二项式系数是;字母b的次数和组合数的上标相同;a与b的次数之和为n。 要点诠释: (1)二项式(a+b)n的二项展开式的第r+1项和(b+a)n的二项展开式的第r+1项是有区别的,应用二项式定理时,其中的a和b是不能随便交换位置的 (2)通项是针对在(a+b)n这个标准形式下而言的,如(ab)n的二项展开式的通项是(只需把b看成b代入二项式定理)。要点三:二项式系数及其性质1.杨辉三角和二项
3、展开式的推导。在我国南宋,数学家杨辉于1261年所著的详解九章算法如下表,可直观地看出二项式系数。展开式中的二项式系数,当依次取1,2,3,时,如下表所示: 1 1 1 2 11 3 3 11 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性质。表中每行两端都是1,而且除1以外的每一个数都等于它肩上的两个数的和。用组合的思想方法理解(a+b)n的展开式中的系数的意义:为了得到(a+b)n展开式中的系数,可以考虑在这n个括号中取r个b,则这种取法种数为,即为的系数 2.的展开
4、式中各项的二项式系数、具有如下性质:对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即;增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n为偶数时,二项展开式中间一项的二项式系数最大;当n为奇数时,二项展开式中间两项的二项式系数,相等,且最大.各二项式系数之和为,即;二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即。要点诠释:二项式系数与展开式的系数的区别:二项展开式中,第r+1项的二项式系数是组合数,展开式的系数是单项式的系数,二者不一定相等。如(ab)n的二项展开式的通项是,在这里对应项的二项式系数都是,但项
5、的系数是,可以看出,二项式系数与项的系数是不同的概念3.展开式中的系数求法(的整数且)如:展开式中含的系数为要点诠释:三项或三项以上的展开式问题,把某两项结合为一项,利用二项式定理解决。要点四:二项式定理的应用1.求展开式中的指定的项或特定项(或其系数).2.利用赋值法进行求有关系数和。二项式定理表示一个恒等式,对于任意的a,b,该等式都成立。利用赋值法(即通过对a、b取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况。设(1) 令x=0,则(2)令x=1,则(3)令x=1,则(4)(5)3.利用二项式定理
6、证明整除问题及余数的求法:如:求证:能被64整除()4.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明。;()如:求证:【典型例题】类型一、求二项展开式的特定项或特定项的系数例1. 求的二项式的展开式【思路点拨】 按照二项式的展开式或按通项依次写出每一项,但要注意符号【解析】解一: 解二:【总结升华】记准、记熟二项式(a+b)n的展开式,是解答好与二项式定理有关问题的前提条件,对较复杂的二项式,有时先化简再展开会更简捷举一反三:【变式】求二项式的展开式
7、【答案】 (1)解法一: 解法二:。例2(1)求的展开式的第四项的系数;(2)求的展开式中的系数及二项式系数【思路点拨】先根据已知条件求出二项式的指数n,然后再求展开式中含x的项因为题中条件和求解部分都涉及指定项问题,故选用通项公式【解析】(1)的展开式的第四项是,的展开式的第四项的系数是(2)的展开式的通项是,的系数,的二项式系数【总结升华】1.利用通项公式求给定项时避免出错的关键是弄清共有多少项,所求的是第几项,相应的是多少;2. 注意系数与二项式系数的区别;3. 在求解过程中要注意幂的运算公式的准确应用。举一反三:【变式1】求的展开式的第3项的二项式系数和系数;【答案】10,80;【变式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识 讲解 二项式 定理 基础
限制150内