北京市2017届高三数学理一轮复习专题突破训练:导数及其应用.doc
《北京市2017届高三数学理一轮复习专题突破训练:导数及其应用.doc》由会员分享,可在线阅读,更多相关《北京市2017届高三数学理一轮复习专题突破训练:导数及其应用.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北京市2017届高三数学理一轮复习专题突破训练导数及其应用一、填空、选择题1、(2016年北京高考)设函数. 若,则的最大值为_; 若无最大值,则实数的取值范围是_.2、(东城区2016届高三上学期期中)曲线处的切线方程是A、x1B、yC、xy1D、xy13、(东城区2016届高三上学期期中)已知定义在R上的函数的图象如图,则的解集为4、(东城区2016届高三上学期期中)若过曲线上的点P的切线的斜率为2,则点P的坐标是5、(2016年全国II高考)若直线是曲线的切线,也是曲线的切线,则 6、(2016年全国III高考)已知为偶函数,当时,则曲线在点处的切线方程是_。7、定义在R上的函数满足:的
2、导函数,则不等式(其中e为自然对数的底数)的解集为A. B. C. D. 8、设f0(x)sinx,f1(x)f0(x),f2(x)f1(x),fn(x)fn1(x),nN,则f2 013(x)()Asinx Bsinx Ccosx Dcosx二、解答题1、(2016年北京高考)设函数,曲线在点处的切线方程为,(1)求,的值;(2)求的单调区间.2、(2015年北京高考)已知函数()求曲线在点处的切线方程;()求证:当时,;()设实数使得对恒成立,求的最大值3、(朝阳区2016届高三上学期期末) 已知函数,其中()若在区间上为增函数,求的取值范 围;()当时,()证明:;()试判断方程是否有实
3、数解,并说明理由4、(大兴区2016届高三上学期期末)已知函数.()当时,求函数在点处的切线方程;()求函数的单调区间;()若错误!未找到引用源。在错误!未找到引用源。上恒成立,求的取值范围.5、(东城区2016届高三上学期期末)已知函数 ()当时,试求在处的切线方程;()当时,试求的单调区间;()若在内有极值,试求的取值范围6、(丰台区2016届高三上学期期末)已知函数. ()求函数的极值; ()若存在实数,且,使得,求实数a的取值范围.7、(丰台区2016届高三一模)已知函数.()求曲线在点处的切线方程;()求证:;()若在区间上恒成立,求的最小值.8、(海淀区2016届高三二模)已知函数
4、. ()当时,求函数的单调区间;()若关于的不等式在上有解,求实数的取值范围;()若曲线存在两条互相垂直的切线,求实数的取值范围.(只需直接写出结果)9、(石景山区2016届高三一模)已知函数()求曲线在点处的切线方程;()求证:当时,;()若对恒成立,求实数的最大值10、(西城区2016届高三二模)设,函数()若函数在处的切线与直线平行,求a的值;()若对于定义域内的任意,总存在使得,求a的取值范围.11、(朝阳区2016届高三二模)已知函数,()当时,求曲线在点处的切线方程;()当时,若曲线上的点都在不等式组所表示的平面区域内,试求的取值范围12、(东城区2016届高三二模)已知,()求的
5、单调区间;()当时,求证:对于,恒成立;()若存在,使得当时,恒有成立,试求的取值范围参考答案一、填空、选择题1、【答案】,.【解析】试题分析:如图作出函数与直线的图象,它们的交点是,由,知是函数的极大值点,当时,因此的最大值是;由图象知当时,有最大值是;只有当时,由,因此无最大值,所求的范围是,故填:,2、B3、A4、(e,e)5、6、7、B8、C二、解答题1、【解析】 (I) 曲线在点处的切线方程为,即 由解得:,(II)由(I)可知:, 令,极小值的最小值是的最小值为即对恒成立在上单调递增,无减区间.2、解析:() 因为,所以, 又因为,所以曲线在点处的切线方程为()令,则因为,所以在区
6、间上单调递增所以,即当时,()由()知,当时,对恒成立当时,令,则所以当时,因此在区间上单调递减当时,即所以当时,令并非对恒成立综上可知,的最大值为3、 解:函数定义域, ()因为在区间上为增函数,所以在上恒成立, 即,在上恒成立,则 4分()当时,,()令,得令,得,所以函数在单调递增令,得,所以函数在单调递减所以, 所以成立 9分()由()知, , 所以 设所以 令,得 令,得,所以函数在单调递增, 令,得,所以函数在单调递减;所以, 即 所以 ,即所以,方程没有实数解 14分4、(1)当 时, 2分 3分所以,函数在点处的切线方程为即: 4分()函数的定义域为: 1分 2分当时,恒成立,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京市 2017 届高三数 学理 一轮 复习 专题 突破 训练 导数 及其 应用
限制150内