导数在研究函数中的应用测试题.doc
《导数在研究函数中的应用测试题.doc》由会员分享,可在线阅读,更多相关《导数在研究函数中的应用测试题.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、导数在研究函数中的应用测试题一 选择题(本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的)1 若函数f(x)在R上是一个可导函数,则f(x)0在R上恒成立是f(x)在区间(-,+)内递增的( )A 充分不必要条件 B 必要不充分条件C 充要条件 D 既不充分也不必要条件2 (原创题)函数单调递增区间是( )A. B. C. D. 3 已知函数在上是单调函数,则实数的取值范围是( )A. B. C. D. 4 对于上可导的任意函数,若满足,则必有( )A. B. C. D. 5 函数有( )A. 极大值,极小值 B. 极大值,极小值C. 极大值,无极小值
2、D. 极小值,无极大值6 已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围是( )A -1a2 B -3a6C a-1或a2 D a-3或a67(改编题)函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点( )A. 个 B. 个 C. 个 D. 个8 (原创题)函数的最小值为( )A. B. C. D. 9 已知函数f(x)x3bx2cxd在区间1,2上是减函数,那么bc( )A 有最大值 B 有最大值C 有最小值 D 有最小值10 已知函数在区间上的最大值为,则a等于( )A. B. C. D. 或11 (原创题)半径为5的半圆有一内接矩形
3、,当周长最大时其边长等于( )A. 和 B. 和 C. 和 D.以上都不对12(2011山东高考)函数y=-2sinx的图象大致是( )二 填空题(共4小题,每小题3分共12分,把答案填在相应的位置上)13 (原创题).函数的单调递增区间是_.14 函数在时有极值,那么的值分别为_. 15 若函数f(x) (a0)在1,)上的最大值为,则a的值为_.16 (改编题).要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为_.三 解答题(本大题五个小题,共52分,解答应写出文字说明,证明过程或演算步骤)17 (本小题10分)已知的图象经过点,且在处的切线方程是(1)求的解析式;(2)求
4、的单调递增区间. 18 (本小题10分) 已知函数在与时都取得极值(1)求的值与函数的单调区间(2)若对,不等式恒成立,求的取值范围. 20 (本小题10分) 某商品每件成本9元,售价30元,每星期卖出432件如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0x21)的平方成正比已知商品单价降低2元时,一星期多卖出24件(1)将一个星期的商品销售利润表示成x的函数;(2)如何定价才能使一个星期的商品销售利润最大20 (改编题)(本小题10分) 已知a为实数, .求导数;若,求在2,2 上的最大值和最小值;若在(,2)和2,+上都是递增的,求a的取值范围 .
5、21 (原创题)(本小题12分)已知函数f(x)ln(x+1)ax(a0)求函数f(x)的单调区间;当时,若,证明:【挑战能力】1 已知函数,其中(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围2 已知是函数的一个极值点, 其中(1) 求m与n的关系式; (2) 求的单调区间;(3) 当时, 函数的图象上任意一点的切线斜率恒大于3m, 求m的取值范围.3 两县城A和B相聚20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度 与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点
6、到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对称A和城B的总影响度为0.0065.(1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离,若不存在,说明理由 .导数在研究函数中的应用测试题答案一 选择题(本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 研究 函数 中的 应用 测试
限制150内