八年级上《画轴对称图形》教案(人教版).doc
《八年级上《画轴对称图形》教案(人教版).doc》由会员分享,可在线阅读,更多相关《八年级上《画轴对称图形》教案(人教版).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级上画轴对称图形教案(人教版)画轴对称图形教案(人教版)教学目标:1.初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。2.通过观察思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。3.引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。教学重点:(1)认识轴对称图形的特点,建立轴对称图形的概念;(2)准确判断生活中哪些物体是轴对称图形。教学难点:本节课教学的难点是找轴对称图形的对称轴。教学过程:(一)创设情境内,感知对称通过实物展示,感知对称,欣赏对称美,激发求知欲,引入新课程。师:同学观察下面的图形,你可以感知
2、到这些图形的哪方面的美感呢? (图1)生:这些图形都是对称的师:下面让我们再做个实验,请看图 2,先猜测一下它可能是什么图形的一部份。 (图2)生:蝴蝶的一半。师:是吗?下面让我们来验证一下我们的猜测是否正确,好吗?请同学们拿出镜子,先把镜子竖直放好,然后把图 2靠紧并垂直于镜子放好,观察一下右图与镜子里的像刚好合成什么图形?(如图3)(同学们个个感到很好奇,纷纷在试一试,然后不约而同,异口同声的说“哇,真的是一只蝴蝶,太神奇了,太漂亮了”。)师:那么图 2为什么与镜子里的像刚好能组成蝴蝶呢?请同学们仔细观察并思考,它们有什么共同点?有什么不同点?生:它们的形状相同,但图形 2与镜子里的像刚好
3、左右相反。生:我认为它们的大小一样生:我认为它们的面积也是一样的。生:我认为如果把它们叠在一起会重合。师:下面我们反过来思考,如果把图 3中的蝴蝶怎么样折叠就能得到图2中的半只蝴蝶?生:只要沿着中间折叠就可以了。师:请同学们继续看下列几幅生活中可见的图形,如果把它们分别折一折,是否也有同样的特点? (学生开始动手试一试,边折边看边议论)(反思:创设问题情境主要在于下面几点: 采取从学生最感兴趣的“照镜子”等实际问题情境入手方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。 通过“照镜子”创造问题情境,学生获得的
4、答案将是丰富的,在最后交流归纳时,他们感受到自己在活动中“研究”的成果,对最终形成的规范、正确的结论是有作用的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养,学生勤于动手,乐于探究,发展学生实践应用能力和创新能力精神成为可行。) (二)动手操作,理解新知师:图形通过对折,如果两侧图形的形状、大小完全一样,我们根据它的特点,能给它一个名字吗?生:轴对称图形。 师:大家看看,如果把图形展示开我们可以清晰的看到一道折痕(师边演示边说),这条折痕所在的直线叫什么呢?若不知道,可以从书本寻找答案。生:对称轴。(齐声回答) 师:非常好!师:(总结给出轴对称的概念)如
5、果一个图形沿着一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线就是它的对称轴.师:下面请同学们在上述几幅图形中画出它们的对称轴。(需强调注意对称轴是一条直线,对称轴是否只有一条。)(反思:采用看一看、折一折、想一想、分一分、说一说等亲身体验活动组织教学,帮助学生在自主探究、合作交往的过程中真正理解和掌握基本概念。) (三)、深化概念,初步应用师:瞧,大家可能没想到吧,通过折一折,其实我们可以发现,数学问题其实就在我们身边。那么如何来判断一个图形是不是轴对称图形呢?生:对折以后看两侧能否完全重合。师:这位同学说的非常好!下面请同学们判断一下平行四边形是不是轴对称图形
6、?生:是,不是 (有学生认为平行四边形是轴对称图形,有学生认为不是,学生争执不下)师:平行四边形到底是不是轴对称图形,请双方就这一话题展开争论。生:请问 ,你说平行四边形是轴对称图形的理由是什么呢?生:我认为如果把平行四边形沿着高剪下来,就可以拼成一个长方形,长方形是轴对称图形,那平行四边形就是。生:判断平行四边形的依据是什么?平行四边形对折以后如果不能重合,就不是轴对称图形。生:你说的方法是推导面积公式的方法,而不是判断轴对称图形的方法。生:你说不是的理由是什么呢?生:我是通过对折以后知道的,把平行四边形对折后,两侧的图形不能完全重合,说明它不是轴对称图形。(学生争论非常激烈)师:到底谁有道
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 画轴对称图形 年级 画轴 对称 图形 教案 人教版
限制150内