《画正多边形(一).doc》由会员分享,可在线阅读,更多相关《画正多边形(一).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、画正多边形(一) 教学目标: 1、使学生了解用量角器等分圆心角来等分圆,从而可以作出圆内接或圆外切正多边形. 2、使学生会用尺规作圆内接正方形和正六边形,在这个基础上能作圆内接正八边形、正三角形、正十二边形. 3、通过画图培养学生的画图能力; 4、通过画正方形到会画正八边形,通过画六边形到画三角形、正十二边形,培养学生观察、抽象、迁移能力. 5、通过画图中需减小积累误差的思考与操作,培养学生解决实际问题的能力. 教学重点: (1)用量角器等分圆心角来等分圆,然后作出圆内接或圆外切正多边形;(2)用尺规作圆内接正方形和正六边形. 教学难点: 准确作图. 教学过程: 一、新课引入: 前几课我们学习
2、了正多边形的定义、概念、性质、判定,尤其学习了正多边形与圆关系的两个定理,而后我们又学习了正多边形的有关计算,本堂课我们一起学习画正多边形. 二、新课讲解: 由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一,前面已学习了正多边形和圆的关系的第一个定理,即把圆分成n(n3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形;过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形,所以想到只要知道外接圆半径r或内切圆半径rn,画出圆来,然后n等分圆周就能画出所需的正n边形. n等分圆周的方法有两种,一种是量角器法,这一种方法简单易学,它是一种
3、常用的方法.其根据是因为相等的圆心角所对弧相等,所以使用量角器等分圆心角,可以达到把圆任意等分的目的,由于学生已具备使用量角器的能力,所以只要讲明根据,让学生动手操作即可. 另一种方法是用尺规等分圆周法,其实质也是等分圆心角,但尺规不能任意等分圆,只适用于一些特殊情况,其中重点是正方形和正六边形的作法,这是因为正八边形、正三角形、正十二边形都是由此作基础而画出来的. 由于尺规作图在理论上准确,但在实际操作中有误差积累,如何减少误差使图形趋于准确?这是一个锻炼学生解决问题的好时机,应让学生亲手实验、观察对比,从而得出结论. (三)重点、难点的学习与目标完成过程 复习提问:1.哪位同学记得正多边形
4、与圆关系的第一个定理?(安排中下生回答)2.哪位同学记得在同圆或等圆中,相等的圆心角所对的弧有什么性质?(安排中下生回答:相等的圆心角所对的弧相等) 现在我们要画半径为r的正n边形,从正多边形与圆关系的第一个定理中,你有什么启发?(安排学生相互讨论后,让中等生回答:只要把半径为r的圆n等分,依次连结n个等分点就得正n边形)那么怎样把半径为r的圆n等分呢?从刚才复习的第二问题中,你又受到什么启发?大家相互间讨论.(安排中等生回答:把360的圆心角n等分)如果要作半径2cm的正九边形,你打算如何作呢?大家互相讨论看看.(安排中等生回答:先画半径2cm的圆,然后把360的圆心角9等份,每一份40),
5、用什么工具可得到40角呢?(安排中下生回答:量角器)我们本堂课所讲画正多边形的第一种方法就是用量角器等分圆,大家用量角器画出半径为2的内接正九边形. 学生在画图实践中必然出现两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个40的圆心角,然后在圆上依次截取40圆心角所对弧的等弧,于是得到圆的9等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正九边形的边长误差较大.对此学生必然迷惑不解,在此教师应肯定作法理论上的正确性,然后讲出图形不够准确的原因是由于误差积累的结果,然后引导学生讨论,研究减小误差积累的二个途径:其一,调整圆规两脚间的距离,使之尽可能准确的等于所画正九边形的边长.其二,若有可能,尽可能减少操作次数,减少产生误差的机会.3推荐阅读:画正多边形(二)画正多边形画正多边形画正多边形画正多边形画正多边形多边形的面积教案 第 4 页 /总页数4 页
限制150内