实验数据处理方法DataAnalysis-ch.ppt
《实验数据处理方法DataAnalysis-ch.ppt》由会员分享,可在线阅读,更多相关《实验数据处理方法DataAnalysis-ch.ppt(65页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、实验数据处理方法第二部分:Monte Carlo模拟第八章第八章 从概率分布函数的抽样从概率分布函数的抽样(Sampling from Probability Distribution Functions)第八章第八章 从概率分布函数的抽样从概率分布函数的抽样(Sampling from Probability Distribution Functions)(Sampling from Probability Distribution Functions)Monte Carlo算法的一个重要组成部分:算法的一个重要组成部分:描述所要模拟的物理系统的一些概率密度函数(描述所要模拟的物理系统的一些
2、概率密度函数(PDF)描述整个系统在空间、能量、时间或多维相空间中的描述整个系统在空间、能量、时间或多维相空间中的发展和演化;发展和演化;Monte Carlo模拟的主要任务模拟的主要任务:通过对这些概率密度函数的随机抽样来模拟物理系统的状通过对这些概率密度函数的随机抽样来模拟物理系统的状态态;为描述系统的演化所必需的一些附加运算为描述系统的演化所必需的一些附加运算.物理过程的描述物理过程的描述从描述物理系统的从描述物理系统的pdf出发,随机抽取系统的出发,随机抽取系统的可能状态。可能状态。第八章第八章 从概率分布函数的抽样从概率分布函数的抽样(Sampling from Probabilit
3、y Distribution Functions)(Sampling from Probability Distribution Functions)本章介绍从一个任意的本章介绍从一个任意的pdf获取样本的抽样方法。获取样本的抽样方法。1.1.直接抽样法(反函数法)直接抽样法(反函数法)2.2.变换抽样法变换抽样法直接抽样法的一般形式直接抽样法的一般形式3.舍选抽样法舍选抽样法4.复合分布的抽样方法复合分布的抽样方法5.混合抽样法混合抽样法6.近似抽样法(列表法近似抽样法(列表法)7.多维分布的抽样多维分布的抽样第八章第八章 从概率分布函数的抽样从概率分布函数的抽样(Sampling from
4、 Probability Distribution Functions)(Sampling from Probability Distribution Functions)8.1 等价的连续概率密度函数等价的连续概率密度函数8.1 等价的连续概率密度函数等价的连续概率密度函数随机变量:连续型、分离型随机变量:连续型、分离型概率密度函数:连续分布、分离分布概率密度函数:连续分布、分离分布利用利用 函数,可将分离型的函数,可将分离型的pdf用连续型的用连续型的pdf 描述描述 用同样的方式来讨论分离型和连续型随机变量的抽样方法用同样的方式来讨论分离型和连续型随机变量的抽样方法8.1 等价的连续概率
5、密度函数等价的连续概率密度函数已知分离型已知分离型pdf:Pi 分离型随机变量分离型随机变量X的取值为的取值为xi的概率的概率定义一个等价的连续型定义一个等价的连续型pdf:利用与连续型随机变量相同的方式计算分离型随机变量的期望值利用与连续型随机变量相同的方式计算分离型随机变量的期望值和方差:和方差:第八章第八章 从概率分布函数的抽样从概率分布函数的抽样(Sampling from Probability Distribution Functions)(Sampling from Probability Distribution Functions)8.2 pdf的变换的变换8.2 pdf的变
6、换的变换x:连续型的随机变量连续型的随机变量,PDF:f(x)y=y(x):x的函数的函数,也是随机变量也是随机变量.求求y(x)的概率密度函数的概率密度函数g(x)1、若随机变量、若随机变量x和和y是一一对应的是一一对应的:2、若随机变量若随机变量x和和y不是一一对应的不是一一对应的:x,x+dxy,y+dyX的取值在的取值在x,x+dx的概率的概率=Y的取的取值在值在y,y+dy的概率:的概率:取绝对值是为了保证取绝对值是为了保证g(y)是非负的是非负的f(x)dx=g(y)dy 即有即有n个区间个区间x,x+dxy,y+dy 需要对这需要对这n个区间求和个区间求和8.2 pdf的变换的变
7、换3、推广到、推广到n个随机变量的情况个随机变量的情况:Jacobian行列式行列式4、特例:如果、特例:如果y(x)是是x的累积分布函数的累积分布函数(cdf)即:即:y在在0,1区间上均匀分布区间上均匀分布 不管不管f(x)取何种形式取何种形式,累积分累积分布函数总是在布函数总是在0,1区间上均匀分布区间上均匀分布第八章第八章 从概率分布函数的抽样从概率分布函数的抽样(Sampling from Probability Distribution Functions)(Sampling from Probability Distribution Functions)8.3 8.3 直接抽样法
8、(反函数法)直接抽样法(反函数法)(Sampling via Inversion of the cdf)8.3 8.3 直接抽样法(反函数法)直接抽样法(反函数法)(Sampling via Inversion of the cdfSampling via Inversion of the cdf)原理原理(注意:注意:pdf f(x)必须是归一化的必须是归一化的):):设设y=F(x)为随机变量为随机变量x的累积分布函数的累积分布函数 x和和y是一一对应的是一一对应的先随机抽取先随机抽取y,然后通过求然后通过求F(x)的反函数的反函数F-1(y)得到随机变量得到随机变量x的值的值随机变量随机
9、变量y在区间在区间0,1上均匀分布上均匀分布 利用利用0,1区间上均匀区间上均匀分布随机数产生器抽取分布随机数产生器抽取8.3 8.3 直接抽样法(反函数法)直接抽样法(反函数法)(Sampling via Inversion of the cdfSampling via Inversion of the cdf)方法:方法:U0,1:0,1区间上均匀分布的随机数区间上均匀分布的随机数1.从从U0,1抽取随机数抽取随机数;2.令令F(x)=;3.解解方程得方程得x:注:需要知道累积分布函数的解析表达式,且累积分布函数的注:需要知道累积分布函数的解析表达式,且累积分布函数的反函数存在反函数存在分
10、离型随机变量的抽样分离型随机变量的抽样直接抽样法适应于分离型的随机变量直接抽样法适应于分离型的随机变量8.3 8.3 直接抽样法(反函数法)直接抽样法(反函数法)(Sampling via Inversion of the cdfSampling via Inversion of the cdf)方法:方法:1.计算计算yk=yk-1+pk,k=2,3,N,y1=p12.2.从从U0,1U0,1抽取随机数抽取随机数;3.3.求满足求满足yk-1 yk 的的K K值值;4.4.随机变量的第随机变量的第k k个取值即为欲抽取的值。个取值即为欲抽取的值。0 1p apbpc pd8.3 8.3 直接
11、抽样法(反函数法)直接抽样法(反函数法)(Sampling via Inversion of the cdfSampling via Inversion of the cdf)p3=0.2b3+c3p2=0.3b2+c2p1=0.5b1+c1a例例1、粒子衰变末态的随机抽样、粒子衰变末态的随机抽样设粒子设粒子a有三种衰变方式,其分支比如下有三种衰变方式,其分支比如下随机选取每次衰变的衰变方式(衰变道)随机选取每次衰变的衰变方式(衰变道)直接抽样法直接抽样法 U0,18.3 8.3 直接抽样法(反函数法)直接抽样法(反函数法)(Sampling via Inversion of the cdfS
12、ampling via Inversion of the cdf)例例2、二项式分布的抽样、二项式分布的抽样方法方法1:利用上面介绍的直接抽样法,需计算累积分布函数,利用上面介绍的直接抽样法,需计算累积分布函数,当当n很大时,求和计算困难很大时,求和计算困难;方法方法2:利用二项式分布的定义利用二项式分布的定义1.产生产生n个个 i U0,1;2.统计满足条件统计满足条件 i p(表示成功)的表示成功)的 i的数目的数目r,则则r表示在表示在n次实验中成功的次数次实验中成功的次数r即为二项式分布的即为二项式分布的抽样值抽样值8.3 8.3 直接抽样法(反函数法)直接抽样法(反函数法)(Samp
13、ling via Inversion of the cdfSampling via Inversion of the cdf)例例3、泊松分布的抽样、泊松分布的抽样方法方法1:利用直接抽样法,但计算累积分布函数时非常复杂利用直接抽样法,但计算累积分布函数时非常复杂方法方法2:利用泊松分布的定义:二项式分布的极限形式利用泊松分布的定义:二项式分布的极限形式1.选取足够大的选取足够大的n,使使p=/n相当小,例如,相当小,例如,p=0.12.产生产生n个个 i U0,1;3.统计满足条件统计满足条件 i Divide(1,2);TH1F*h1=new TH1F(h1,h1,100,-5.0,5.0
14、);TH1F*h2=new TH1F(h2,h2,100,-5.0,5.0);SetSeed(9,11)Const Pi=3.1415926;for(int i=0;i Fill(y1);h2-Fill(y2);c1-cd(1);h1-Draw();c1-cd(2);h2-Draw();8.4 8.4 变换抽样法变换抽样法直接抽样法的一般形式直接抽样法的一般形式第八章第八章 从概率分布函数的抽样从概率分布函数的抽样(Sampling from Probability Distribution Functions)(Sampling from Probability Distribution F
15、unctions)8.5 舍选抽样法舍选抽样法(acceptance-rejection sampling)8.5 舍选抽样法舍选抽样法(acceptance-rejection sampling)acceptance-rejection sampling)直接抽样法的困难:直接抽样法的困难:许多随机变量的累积分布函数无法用解析函数给出许多随机变量的累积分布函数无法用解析函数给出;有些随机变量的累积分布函数的反函数不存在或难以求出;有些随机变量的累积分布函数的反函数不存在或难以求出;即使反函数存在,但计算困难即使反函数存在,但计算困难舍选抽样法:舍选抽样法:抽取随机变量抽取随机变量x的一个随机
16、序列的一个随机序列xi,i=1,2,按一定的舍选规按一定的舍选规则从中选出一个子序列,使其满足给定的概率分布则从中选出一个子序列,使其满足给定的概率分布.假定:假定:随机变量随机变量x的值域为的值域为a,b;x的概率密度函数:的概率密度函数:f(x)=P*(x)/Z,(其中其中Z为归一化因子)为归一化因子)难以直接抽样难以直接抽样;Q(x)=Q*(x)/ZQ 是另外一个较为简单的函数是另外一个较为简单的函数(ZQ为归一化因子)为归一化因子)可用简单的方法进行抽样可用简单的方法进行抽样;在在x的整个取值范围内:的整个取值范围内:cQ*(x)P*(x),其中其中c为一常数为一常数8.5 舍选抽样法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验 数据处理 方法 DataAnalysis ch
限制150内