定积分的概念与性质.pptx
《定积分的概念与性质.pptx》由会员分享,可在线阅读,更多相关《定积分的概念与性质.pptx(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、定积分的概念定积分的概念 前一章我们从导数的逆运算引出了不定积前一章我们从导数的逆运算引出了不定积分,系统地介绍了积分法,这是积分学的第一类分,系统地介绍了积分法,这是积分学的第一类基本问题。本章先从实例出发,引出积分学的第基本问题。本章先从实例出发,引出积分学的第二类基本问题二类基本问题定积分,它是微分(求局部量)定积分,它是微分(求局部量)的逆运算(微分的无限求和的逆运算(微分的无限求和求总量),然后求总量),然后着重介绍定积分的计算方法,它在科学技术领域着重介绍定积分的计算方法,它在科学技术领域中有着极其广泛的应用。中有着极其广泛的应用。重点重点定积分的概念和性质,微积分基本公定积分的概
2、念和性质,微积分基本公 式,定积分的换元法和分部积分法式,定积分的换元法和分部积分法难点难点定义及换元法和分部法的运用定义及换元法和分部法的运用基本要求基本要求正确理解定积分的概念及其实际背景正确理解定积分的概念及其实际背景记住定积分的性质并能正确地运用记住定积分的性质并能正确地运用掌握变上限定积分概念,微积分基本定理,掌握变上限定积分概念,微积分基本定理,并会用并会用N-L公式公式计算定积分,计算定积分,能正确熟练地运用换元法和分部积分法能正确熟练地运用换元法和分部积分法正确理解两类广义积分概念,正确理解两类广义积分概念,并会用定义并会用定义 计算一些较简单的广义积分。计算一些较简单的广义积
3、分。计计 算定积分算定积分实例实例1 1 (求曲边梯形的面积)(求曲边梯形的面积)求面积问题由来已久,对于由直线所围成的求面积问题由来已久,对于由直线所围成的平面图形的面积我们已经会求,下图所示的图形平面图形的面积我们已经会求,下图所示的图形如何求面积如何求面积将其置于直角将其置于直角坐标系下考察坐标系下考察oxyabABmn问题归结为问题归结为AmBbaA与与AnBbaA的面积之差的面积之差曲边梯形曲边梯形一、问题的提出一、问题的提出abxyo用矩形面积近似取代曲边梯形面积用矩形面积近似取代曲边梯形面积abxyo(四个小矩形)(四个小矩形)abxyo(九个小矩形)(九个小矩形)显然,小矩形越
4、多,矩形总面积越接近显然,小矩形越多,矩形总面积越接近曲边梯形面积曲边梯形面积注意当分割加细时,矩形面积和与曲边梯形注意当分割加细时,矩形面积和与曲边梯形面积的关系是越来越接近面积的关系是越来越接近曲边梯形如图所示曲边梯形如图所示曲边梯形面积的近似值为曲边梯形面积的近似值为曲边梯形面积为曲边梯形面积为实例实例2 2 (求变速直线运动的路程)(求变速直线运动的路程)思路思路:把整段时间分割成若干小段,每小段上:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细得到路程的近似值,最后通过对时间的
5、无限细分过程求得路程的精确值分过程求得路程的精确值部分路程值部分路程值某时刻的速度某时刻的速度(2)求和)求和(3)取极限)取极限路程的精确值路程的精确值 (1)分割)分割问题问题 以上两个例子,一个是以上两个例子,一个是几何几何问题,求的问题,求的是以曲线是以曲线 y=f(x)为曲边,以为曲边,以 a,b 为底边的为底边的曲边梯形的面积。一个是曲边梯形的面积。一个是物理物理问题,求的是问题,求的是速度函数为速度函数为v(t)的变速直线运动的物体在时的变速直线运动的物体在时间区间间区间 a,b 所走过的路程所走过的路程归纳归纳 它们求的都是展布在某个区间上的总它们求的都是展布在某个区间上的总量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 概念 性质
限制150内