《三角形外角定理的证明.pptx》由会员分享,可在线阅读,更多相关《三角形外角定理的证明.pptx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章 平行线的证明 5、三角形内角和定理(2)郑州市第七十五中学 郑红莉学习目标:1、通过视频引入活动一,会判断和作出三角形外角;2、通过猜想、同桌交流,能描述有关三角形外角的两个定理及推理过程;3、通过小组合作,会运用三角形内角和定理的两个推论解决相关问题活动一:三角形的外角三角形内角的一条边 与另一条边的反向延长线组成的角叫做这个三角形的外角。如图所示,1就是ABC的外角活动一:三角形的外角请你尝试做出 的其它外角,你能做出几个?ABC想一想:1、每一个三角形有几个外角?2、每一个顶点处相对应的外角有几个?3、这些外角中有几个外角相等?针对练习1如图1,ADC的外角是()A.ABC B.
2、ACD C.BDC D.BCDCADC呢?活动二:三角形外角与内角关系如图:1是ABC的一个外角,1与图中其他各角有何关系?1+4=1801=2+312,13活动二:三角形外角与内角关系1+4=180三角形的一个外角与和它相邻的内角的互补。(平角的定义)?1=2+3已知:1是ABC的一个外角求证:1=2+3活动二:三角形外角与内角关系 2+3+4=180(三角形内角和定理)1=2+3(同角的补角相等)要求:同桌商量一下,看看你们能想到哪些方法?奖励2积分证明:1+4=180(平角定义)1=2+3活动二:三角形外角与内角关系三角形的一个外角等于和它不相邻的两个内角的和。几何语言 1是ABC的外角
3、 1=2+3(三角形的一个外角等于和它不相邻的两个内角的和)已知:如图,1是ABC的一个外角.求证:1 2,1 3D ABC12312,13 活动二:三角形外角与内角关系证明:1=2+3(三角形的一个外角等于 和它不相邻的两内角和)1 2,1 3三角形的一个外角大于任何一个和它不相邻的内角 几何语言 1是ABC的外角 1 2,13(三角形的一个外角等于和它不相邻的两个内角的和)像这样,由一个基本事实或定理直接推出的定理,叫做这个这个公理或定理的推论公理或定理的推论推论可以当作定理使用推论可以当作定理使用.定理2 三角形的一个外角大于任何一个和它不相邻的内角.ABCD123三角形内角和定理的推论
4、 定理定理 三角形的一个外角等于和它不相邻的两个内角的和.推论推论1:推论推论2:2:ABC中,中,1=2+3 ABC中,中,12,13这个结论以后可以直接运用.活动三:三角形内角和定理推论 1.1.如图如图:ABC:ABC中,中,D D是是BCBC延长线上一点延长线上一点 1 1)则)则 ,;2 2)若)若A=35,A=35,DCA=80 DCA=80,则则 ACB=ACB=B=B=ACDAACDB10045针对练习235802.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定针对练习2C已知:如图,在ABC中,AD平分
5、外角EAC,B=C.求证:ADBC.ACDBE认真阅读例题,想一想例题是运用了什么定理得到了证明?活动四:三角形外角定理运用已知:如图,在ABC中,AD平分外角EAC,B=C.求证:ADBC.DAC=CDAC=C(等量代换等量代换)ADBC ADBC(内错角相等内错角相等,两直线平行两直线平行).).ACDBE还有其它方法吗还有其它方法吗?活动四:三角形外角定理运用证明:证明:EAC=B+C EAC=B+C(三角形的一个外角等于和它三角形的一个外角等于和它不相邻的两个内角的和不相邻的两个内角的和)B=C B=C(已知已知)C=EACC=EAC(等式性质等式性质)AD AD平分平分EACEAC(
6、已知已知)DAC=EACDAC=EAC(角平分线的定义角平分线的定义)请在例题的基础上通过增加或者适当修改,换个方法试试。DAC=CDAC=C(等量代换等量代换)ADBC ADBC(内错角相等内错角相等,两直线平行两直线平行).).ACDBE活动四:三角形外角定理运用你用的是什么你用的是什么方法?方法?证明:证明:EAC=B+C EAC=B+C(三角形的一个外角等于和它三角形的一个外角等于和它不相邻的两个内角的和不相邻的两个内角的和)B=C(B=C(已知已知)C=EACC=EAC(等式性质等式性质)B=EAC(等式性质)AD AD平分平分EAC(EAC(已知已知)DAC=EACDAC=EAC(
7、角平分线的定义角平分线的定义)DAE=EAC(角平分线的定义)DAE=B(等量代换)(同位角相等,两直线平行).已知:如图P是ABC内一点,连接PB、PC。求证:BPC A活动四:三角形外角定理运用小组互相讨论,说一说其推理过程看看哪组最快,方法最多?(奖励小组3积分)要求:有几种方法就由几个人来 完成叙述证明:延长BP交AC于点DD12已知:如图P是ABC内一点,连接PB、PC。求证:BPC A 1 是PDC的一个外角 1 2 2是ABD的一个外角 2 A 1 A即BPC A?(外角定义)(三角形的一个外角大于任何一个和它不相邻的内角)已知:如图P是ABC内一点,连接PB、PC。求证:BPC
8、 A 活动四:三角形外角定理运用E延长CP交AB与点E 1是ABP的一个外角 1 3 2是ACP的一个外角 2 4 1+2 3+4即 BPC BACE证明:连接AP并延长交BC于点E.1234已知:如图P是ABC内一点,连接PB、PC。求证:BPC A已知:如图P是ABC内一点,连接PB、PC。求证:BPC A 活动四:三角形外角定理运用(2)根据本节课的学习,你能猜想一个关于角之间等量关系的结论吗?并说明理由小组互相讨论,说一说其推理过程看看哪组最快,方法最多?(奖励小组3积分)BPC=A+ABC+ACP 活动四:三角形外角定理运用根据本节课的学习,你能猜想一个关于角之间的等量关系的结论吗?
9、并说明理由EO1423下列哪几种说法正确?(1)BACD(2)B+ACB=180A(3)B+ACBBBEAHCD针对练习2课堂小结用自己的话描述一下本节课的收获今天你学到了哪些知识?学到了哪些思想方法你还有什么收获当堂检测1、求下列各图中1的度数。30 60 1 1 35 120 1 145 50 1 19085952.已知等腰三角形的一个外角为150,则它的底角为_ _.30或75 3.如图所示,A=50,B=40,C=30,则BDC=_.DCBA1204 已知:在ABC中,1是它的一个外角,E为边AC上一点,延长BC到D,连接DE.求证:12.CABF1345ED2布置作业:1、AB层 p183的T22、CD层 p183的T3/4已知:1是ABC的一个外角求证:1=2+3E证明:过点B做BEACABE=2(两直线平行,内错角相等)EBD=3(两直线平行,同位角相等)ABD=ABE+EBD ABD=2+3(等量代换)活动二:三角形外角与内角关系
限制150内