人教版高中数学 3.2《立体几何中的向量方法(二)》课件 新人教B选修21.ppt
《人教版高中数学 3.2《立体几何中的向量方法(二)》课件 新人教B选修21.ppt》由会员分享,可在线阅读,更多相关《人教版高中数学 3.2《立体几何中的向量方法(二)》课件 新人教B选修21.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.2 3.2 立体几何中的向量方法(一)立体几何中的向量方法(一)2021/8/9 星期一1ala给定一个点给定一个点A和一个和一个向量向量a,过点过点A,以向,以向量量a为法向量的平为法向量的平面是完全确定的。面是完全确定的。2021/8/9 星期一2方法指导:方法指导:怎样求平面法向量?怎样求平面法向量?一般根据平面法向量的定义推导出平面的法向量,进而就可以利用平面的法向量解决相关立体几何问题。推导平面法向量的方法如下:2021/8/9 星期一3设直线设直线l,m的方向向量分别为的方向向量分别为a,b,平面,平面,的法向量分别为的法向量分别为u,v,则则线线平行:线线平行:lm a b
2、a=kb;线面平行:线面平行:l au au=0;面面平行:面面平行:u v u=kv.线线垂直:线线垂直:l m a b ab=0;面面垂直:面面垂直:u v uv=0.线面垂直:线面垂直:l a u a=ku;2021/8/9 星期一4例例1、在棱长为、在棱长为1的正方体的正方体 中,中,求平面求平面 的法向量。的法向量。ABCDxyA1B1C1D1z图12021/8/9 星期一5二、讲授新课二、讲授新课1 1、用空间向量解决立体几何问题的、用空间向量解决立体几何问题的“三步曲三步曲”。(1)建立立体图形与空间向量的联系,用空间)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、
3、直线、平面,把立体几向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果)把向量的运算结果“翻译翻译”成相应的几何意义。成相应的几何意义。(化为向量问题)(化为向量问题)(进行向量运算)(进行向量运算)(回到图形问题)(回到图形问题)2021/8/9 星期一6 例例1:如图如图1:一个结晶体的形状为四棱柱,其中,:一个结晶体的形状为四棱柱,其中,以顶点以顶点A为端点的三条棱长都相
4、等,且它们彼此的夹为端点的三条棱长都相等,且它们彼此的夹角都是角都是60,那么以这个顶点为端点的晶体的对角线,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?的长与棱长有什么关系?A1B1C1D1ABCD图图1解:解:如图如图1,设,设化为向量问题化为向量问题依据向量的加法法则,依据向量的加法法则,进行向量运算进行向量运算2021/8/9 星期一7所以所以回到图形问题回到图形问题这个晶体的对角线这个晶体的对角线 的长是棱长的的长是棱长的 倍。倍。思考:思考:(1)本题中四棱柱的对角线)本题中四棱柱的对角线BD1的长与棱长的长与棱长有什么关系?有什么关系?A1B1C1D1ABCD分析分析
5、:2021/8/9 星期一8思考:思考:(2 2)如果一个四棱柱的各条棱)如果一个四棱柱的各条棱长长都相等,并且以某一都相等,并且以某一顶顶点点为为端点端点的各棱的各棱间间的的夹夹角都等于角都等于 ,那么有那么有这个四棱柱的对角线的长可以确定这个四棱柱的对角线的长可以确定棱长吗棱长吗?A1B1C1D1ABCD分析分析:这个四棱柱的对角线的长可以确定棱长。这个四棱柱的对角线的长可以确定棱长。2021/8/9 星期一9(3 3)本题的晶体中相对的两个平面之间的距)本题的晶体中相对的两个平面之间的距离是多少?(提示:求两个平行平面的距离,离是多少?(提示:求两个平行平面的距离,通常归结为求两点间的距
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何中的向量方法二 人教版高中数学 3.2立体几何中的向量方法二课件 新人教B选修21 人教版 高中数学 3.2 立体几何 中的 向量 方法 课件 新人 选修 21
限制150内