MATLAB语言与控制系统仿真控制系统的分析方法.ppt
《MATLAB语言与控制系统仿真控制系统的分析方法.ppt》由会员分享,可在线阅读,更多相关《MATLAB语言与控制系统仿真控制系统的分析方法.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、CH4、控制系统的分析方法 早期的控制系统分析过程复杂而耗时,如想得到一个系统的冲激响应曲线,首先需要编写一个求解微分方程的子程序,然后将已经获得的系统模型输入计算机,通过计算机的运算获得冲激响应的响应数据,然后再编写一个绘图程序,将数据绘制成可供工程分析的响应曲线。MATLAB控制系统工具箱和SIMULINK辅助环境的出现,给控制系统分析带来了福音。控制系统的分析包括系统的稳定性分析、时域分析、频域分析及根轨迹分析。http:/ 控制系统的稳定性分析q对于连续时间系统,如果闭环极点全部在S平面左半平面,则系统是稳定的。q对于离散时间系统,如果系统全部极点都位于Z平面的单位圆内,则系统是稳定的
2、。q若连续时间系统的全部零极点都位于S左半平面;或若离散时间系统的全部零极点都位于Z平面单位圆内,则系统是最小相位系统。一、系统稳定及最小相位系统判据http:/ 已知某系统的模型如右所示:要求判断系统的稳定性及系统是否为最小相位系统。例exp4_2.m系统模型如下所示,判断系统的稳定性,以及系统是否为最小相位系统。ii=find(条件式)用来求取满足条件的向量的下标向量,以列向量表示。例如 exp4_1.m中的条件式为real(p0),其含义就是找出极点向量p中满足实部的值大于0的所有元素下标,并将结果返回到ii向量中去。这样如果找到了实部大于0的极点,则会将该极点的序号返回到ii下。如果最
3、终的结果里ii的元素个数大于0,则认为找到了不稳定极点,因而给出系统不稳定的提示,若产生的ii向量的元素个数为0,则认为没有找到不稳定的极点,因而得出系统稳定的结论。pzmap(p,z)根据系统已知的零极点p和z绘制出系统的零极点图第二节 控制系统的时域分析一个动态系统的性能常用典型输入作用下的响应来描述。响应是指零初始值条件下某种典型的输入函数作用下对象的响应,控制系统常用的输入函数为单位阶跃函数和脉冲激励函数(即冲激函数)。在MATLAB的控制系统工具箱中提供了求取这两种输入下系统响应的函数。一、时域分析的一般方法q求取系统单位阶跃响应:step()q求取系统的冲激响应:impulse()
4、1、step()函数的用法 exp4_3_.mqy=step(num,den,t):其中num和den分别为系统传递函数描述中的分子和分母多项式系数,t为选定的仿真时间向量,一般可以由t=0:step:end等步长地产生出来。该函数返回值y为系统在仿真时刻各个输出所组成的矩阵。qy,x,t=step(A,B,C,D,iu):其中A,B,C,D为系统的状态空间描述矩阵,iu用来指明输入变量的序号。x为系统返回的状态轨迹。q如果对具体的响应值不感兴趣,而只想绘制系统的阶跃响应曲线,可调用以下的格式:step(num,den);step(num,den,t);step(A,B,C,D,iu,t);s
5、tep(A,B,C,D,iu);q线性系统的稳态值可以通过函数dcgain()来求取,其调用格式为:dc=dcgain(num,den)或dc=dcgain(a,b,c,d)qy,x,t=step(num,den):此时时间向量t由系统模型的特性自动生成,状态变量x返回为空矩阵。2、impulse()函数的用法求取脉冲激励响应的调用方法与step()函数基本一致。y=impulse(num,den,t);y,x,t=impulse(num,den);y,x,t=impulse(A,B,C,D,iu,t)impulse(num,den);impulse(num,den,t)impulse(A,B
6、,C,D,iu);impulse(A,B,C,D,iu,t)仿真时间t的选择:q对于典型二阶系统根据其响应时间的估算公式 可以确定。q对于高阶系统往往其响应时间很难估计,一般采用试探的方法,把t选大一些,看看响应曲线的结果,最后再确定其合适的仿真时间。q一般来说,先不指定仿真时间,由MATLAB自己确定,然后根据结果,最后确定合适的仿真时间。q在指定仿真时间时,步长的不同会影响到输出曲线的光滑程度,一般不易取太大。q例exp4_6_.m二、常用时域分析函数时间响应探究系统对输入和扰动在时域内的瞬态行为,系统特征如:上升时间、调节时间、超调量和稳态误差都能从时间响应上反映出来。MATLAB除了提
7、供前面介绍的对系统阶跃响应、冲激响应等进行仿真的函数外,还提供了大量对控制系统进行时域分析的函数,如:covar:连续系统对白噪声的方差响应initial:连续系统的零输入响应lsim:连续系统对任意输入的响应对于离散系统只需在连续系统对应函数前加d就可以,如dstep,dimpulse等。它们的调用格式与step、impulse类似,可以通过help命令来察看自学。三、时域分析应用实例MATLAB的step()和impulse()函数本身可以处理多输入多输出的情况,因此编写MATLAB程序并不因为系统输入输出的增加而变得复杂。第三节 控制系统的频域分析q频率响应是指系统对正弦输入信号的稳态响
8、应,从频率响应中可以得出带宽、增益、转折频率、闭环稳定性等系统特征。q频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性。频率特性函数与传递函数有直接的关系,记为:一、频域分析的一般方法q求取系统对数频率特性图(波特图):bode()q求取系统奈奎斯特图(幅相曲线图或极坐标图):nyquist()q频域分析法是应用频率特性研究控制系统的一种典型方法。采用这种方法可直观地表达出系统的频率特性,分析方法比较简单,物理概念比较明确,对于诸如防止结构谐振、抑制噪声、改善系统稳定性和暂态性能等问题,都可以从系统的频率特性上明确地看出其物理实质和解决途经。通常将频率特性用曲线的形式进行表
9、示,包括对数频率特性曲线和幅相频率特性曲线简称幅相曲线,MATLAB提供了绘制这两种曲线的函数。1、对数频率特性图(波特图)exp4_10.m exp4_10_.mq对数频率特性图包括了对数幅频特性图和对数相频特性图。横坐标为频率w,采用对数分度,单位为弧度/秒;纵坐标均匀分度,分别为幅值函数20lgA(w),以dB表示;相角,以度表示。MATLAB提供了函数bode()来绘制系统的波特图,其用法如下:qbode(a,b,c,d):自动绘制出系统的一组Bode图,它们是针对连续状态空间系统a,b,c,d的每个输入的Bode图。其中频率范围由函数自动选取,而且在响应快速变化的位置会自动采用更多取
10、样点。qbode(a,b,c,d,iu):可得到从系统第iu个输入到所有输出的波特图。qbode(num,den):可绘制出以连续时间多项式传递函数表示的系统的波特图。qbode(a,b,c,d,iu,w)或bode(num,den,w):可利用指定的角频率矢量绘制出系统的波特图。q当带输出变量mag,pha,w或mag,pha引用函数时,可得到系统波特图相应的幅值mag、相角pha及角频率点w矢量或只是返回幅值与相角。相角以度为单位,幅值可转换为分贝单位:magdb=20log10(mag)2、奈奎斯特图(幅相频率特性图)exp4_11.m exp4_11_.mq对于频率特性函数G(jw),
11、给出w从负无穷到正无穷的一系列数值,分别求出Im(G(jw)和Re(G(jw)。以Re(G(jw)为横坐标,Im(G(jw)为纵坐标绘制成为极坐标频率特性图。MATLAB提供了函数nyquist()来绘制系统的极坐标图,其用法如下:qnyquist(a,b,c,d):绘制出系统的一组Nyquist曲线,每条曲线相应于连续状态空间系统a,b,c,d的输入/输出组合对。其中频率范围由函数自动选取,而且在响应快速变化的位置会自动采用更多取样点。qnyquist(a,b,c,d,iu):可得到从系统第iu个输入到所有输出的极坐标图。qnyquist(num,den):可绘制出以连续时间多项式传递函数表
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MATLAB 语言 控制系统 仿真 分析 方法
限制150内