2022 圆锥的体积教学设计.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022 圆锥的体积教学设计.docx》由会员分享,可在线阅读,更多相关《2022 圆锥的体积教学设计.docx(87页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022 圆锥的体积教学设计 圆锥的体积教学设计 作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。怎样写教学设计才更能起到其作用呢?以下是我收集整理的 圆锥的体积教学设计,希望对大家有所帮助。 圆锥的体积教学设计1 教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算
2、方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。2、过程与方法:通过“直觉猜想试验探索合作交流得出结论实践运用”探索过程
3、,获得圆锥体积的推导过程和学习的方法。3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。教法学法:试验探究法 小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时 1课时教学流
4、程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。二、创设情景 激发激情展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?设计意图以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)三、试验探究 合作学习(探讨圆柱与圆锥体积之间的关系)探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?1、猜想:猜想它们的底、高之间各有什么关系?2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)4
5、、教师介绍数学专用名词:等底 等高设计意图通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?1、大胆猜想:等底等高圆柱与圆锥体积之间的关系2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)3、小组汇报试验结论(提醒学生汇报出试验步骤)教学预设:(1)圆椎的体积是圆柱体积的3倍;(2)圆锥的体积是圆柱体积的三分之一;(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。4、通过学生汇报的试
6、验结论,分析归纳总结试验结论。5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)设计意图通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。探究三:(伸展试验-演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?3、学生通过观看试验汇报结论。4、教师引导学生分析归纳总结圆锥体积是
7、圆柱体积的三分之一所存在的条件。5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。设计意图通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。四、实践运用 提升技能1、判断题:题目内容见多媒体展示独立思考-抽生汇报-说明理由-师生评议2、口答题:题目内容见多媒体展示独立思考-抽生汇报-学生评议3、拓展运用:课本例题3学生分析题意-小组合作解答-学生解答展示-师生评议设计意图通过判断题、口答题题型的训练,及时检查学生对
8、所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。五、谈谈收获:这节课你学到了什么呢?六、课堂作业:1、做在书上作业:练习四 第4、7题2、坐在作业本上作业:练习四 第3题 圆锥的体积教学设计2 教学内容:圆锥的体积是九年义务教育六年制小学数学第十一册第三单元的内容。教学目标:1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。3、培养学生的合作意识及主动探索知
9、识的精神。教学重点:让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。教学准备:1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。2、教学软件。教学流程:一、创设情景,激趣引新。1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥
10、,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?”(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。二、小组合作,探究学习。1、动手操作,测量圆锥体的体积。要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。3、分组汇报不同的
11、方法。学生在汇报时可边讲解边示范方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。方法二:利用手中的一立方厘米的小木块进行估算。方法三:受曹冲称象的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh设计意图:通过讨论研究和动手操作,发展学生的
12、创新能力,和解决实际问题的能力。(1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?(2)学生再次在小组内操作探究。(3)汇报结论。(4)微机演示。当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。4、评价以上各种办法同学们的结论是用公式计算比较方便。三、解决实际问题(问题一)1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)2、汇报结果。先测量出
13、圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x3.14x(10/2)x10262立方厘米(忽略厚度,即把溶剂可看作体积)(问题二)1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?2、汇报结果。用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262236克3、验证计算结果用称称一称,比较一下结果。4、讨论两次结果为什么不同。由于测量时厚度不计,计算时是近似值。都存在误差。设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。(问题三)利用圆锥体积公式计算。(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?(问题
14、四)计算不规则物体体积或容积。(直说出计算的方法即可)1、用什么方法计算出葫芦能装多少水?2、胡萝卜的体积怎样计算?3、不规则的零件体积计算?设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。四、总结全课说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。 圆锥的体积教学设计3 教学内容:九年义务教育六年制小学数学第十二册P32页。教学目标:1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。3、进一步培养学生将所学知识运用和服务于生活的能力。
15、教学重点:灵活运用圆柱圆锥的有关知识解决实际问题。教学难点:同教学难点。设计理念:练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。教学步骤、教师活动、学生活动一、复习铺垫、内化知识。1. 圆锥体的体积公式是什么?我们是如何推导的?2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。(3)一个圆柱与和它等底等高的圆锥的体积和是14
16、4立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。3.求下列圆锥体的体积。(1)底面半径4厘米,高6厘米。(2)底面直径6分米,高8厘米。(3)底面周长31.4厘米.高12厘米。4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。学生独立练习,互相批改,指出问题。学生交流一下这几题在解题时要注意什么?二、丰富拓展、延伸练习。1.拓展练习:(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?2.完成31页第5
17、题。讨论下列问题:(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?学生分组讨论,教师参与其中,以有疑问的方式参与讨论。三、充分提高,全面升华。1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。3.讨论练习八蒙古包所占空间的大小的方法。(1)蒙古包是由哪几个部分组成的?(2)上部的圆锥和下
18、部的圆柱有哪些相同的地方,有哪些不同的地方?(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。4.交流一下本节课的收获。学生分组讨论后动手实践并计算。学生先交流。四、全课总结,内化知识。1.提问:(1)同学们掌握了圆锥体的哪些知识?(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?2.学有余力的同学思考38页思考题。3.作业:练习八6、7、8学生独立练习 圆锥的体积教学设计4 教学内容:人教版九年义务教育小学数学教科书第十二册。整体感知:这部分知识是学生在有了圆锥的认识和圆柱体积相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,
19、会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。教学目的:1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。2、让学生经历猜想验证,合作探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。点评:知识与技能目标的设计全面、具体、有针对性。不但使学生掌握圆锥体积的计算公式,而且培养了学生运用圆
20、锥体积公式解决生活中的实际问题的能力,使学生体会到数学与生活的密切联系注。并注重对学生“猜想验证”、“合作探究”等学习方式的培养及“转化”数学思想方法的渗透;同时关注学生空间观念的培养及唯物辩证思想的渗透。教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题。教学过程:一、 创设情境导入新课。1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?2、引导学生自己想办法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流
21、,最后汇报自己的想法。)3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。点评:本环节通过一系列的问题情境,激发学生学习新知识的兴趣。首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。这样不仅巩固了前面所学的知识,而且培养了学生的问题意识。然后放手让学生自己想办法用不同的方法求它的体积,拓展了学生的思维,培养了学生的创新能力,真正体现了学生的主体地位。最后让学生从具体的问题中体会到自己方法的太麻繁、不实用,从而让学生有思索出一种更简洁、广泛的求圆锥体积的方法需要。二、经历体验,探究新知(一)
22、渗透转化,帮助猜想1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这部分圆柱等底等高,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022圆锥的体积教学设计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内