基本不等式及应用(7页).doc
《基本不等式及应用(7页).doc》由会员分享,可在线阅读,更多相关《基本不等式及应用(7页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-基本不等式及应用-第 8 页基本不等式及应用一、考纲要求:1.了解基本不等式的证明过程2会用基本不等式解决简单的最大(小)值问题3了解证明不等式的基本方法综合法二、基本不等式基本不等式不等式成立的条件等号成立的条件a0,b0ab三、常用的几个重要不等式(1)a2b22ab(a,bR) (2)ab()2(a,bR)(3)()2(a,bR) (4)2(a,b同号且不为零)上述四个不等式等号成立的条件都是ab.四、算术平均数与几何平均数设a0,b0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数四个“平均数”的大小关系;a,bR+:当且仅当ab
2、时取等号.五、利用基本不等式求最值:设x,y都是正数(1)如果积xy是定值P,那么当xy时和xy有最小值2.(2)如果和xy是定值S,那么当xy时积xy有最大值S2.强调:1、在使用“和为常数,积有最大值”和“积为常数,和有最小值”这两个结论时,应把握三点:“一正、二定、三相等、四最值”.当条件不完全具备时,应创造条件. 正:两项必须都是正数; 定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。等:等号成立的条件必须存在.2、当利用基本不等式求最大(小)值等号取不到时,如何处理?(若最值取不到可考虑函数的单调性)想一想:错在哪里?3、已知两正数x,y满足xy1,则z(
3、x)(y)的最小值为_解一:因为对a0,恒有a2,从而z(x)(y)4,所以z的最小值是4.解二:z(xy)2222(1),所以z的最小值是2(1)【错因分析】错解一和错解二的错误原因是等号成立的条件不具备,因此使用基本不等式一定要验证等号成立的条件,只有等号成立时,所求出的最值才是正确的【正确解答】z(x)(y)xyxyxy2,令txy,则0txy()2,由f(t)t在(0,上单调递减,故当t时, f(t)t有最小值,所以当xy时z有最小值.误区警示:(1)在利用基本不等式求最值(值域)时,过多地关注形式上的满足,极容易忽视符号和等号成立条件的满足,这是造成解题失误的重要原因如函数y12x(
4、x0)有最大值12而不是有最小值12.(2)当多次使用基本不等式时,一定要注意每次是否都能保证等号成立,并且要注意取等号条件的一致性,否则就会出错课堂纠错补练:若0x,则f(x)sinx的最小值为_解析:令sinxt,00,b0,ab1,求证:4.【证明】(1)a0,b0,ab1,2224(当且仅当ab时等号成立)4.原不等式成立练习:已知a、b、c为正实数,且abc1,求证:(1)(1)(1)8.证明:a、b、c均为正实数,且abc1,(1)(1)(1)8.当且仅当abc时取等号考点2利用基本不等式求最值 (1)合理拆分项或配凑因式是常用的技巧,而拆与凑的目标在于使等号成立,且每项为正值,必
5、要时需出现积为定值或和为定值(2)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,而且也是检验转换是否有误的一种方法例4: (1)设0x2,求函数的最大值【分析】由和或积为定值从而利用基本不等式求最值,然后确定取得最值的条件【解】(1)0x0,y,当且仅当x2x即x1时取等号,当x1时,函数y的最大值是.(2) x0,求f(x)3x的最小值;(3)已知:x0,y0.且2x+5y=20,求 xy的最大值.(4)已知a,求的取值范围显然a2,当a2时,a20,a(a2)2
6、226,当且仅当a2,即a4时取等号,当a2时,a20,y0,且xy1,求的最小值 x0,y0,且xy1,()(xy)77274,当且仅当,即2xy时等号成立,的最小值为74.练习:求下列各题的最值(1)已知x0,y0,lgxlgy1,求z的最小值;解:(1)由x0,y0,lgxlgy1,可得xy10.则2.zmin2.当且仅当2y5x,即x2,y5时等号成立(2)x0,求f(x)3x的最大值;x0,f(x)3x212,等号成立的条件是3x,即x2,f(x)的最小值是12.(3)x3,求f(x)x的最大值x3,x30,f(x)x(x3)3(3x)3231,当且仅当3x,即x1时,等号成立故f(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本 不等式 应用
限制150内