新北师大版初中七年级数学下册全册教案.docx
《新北师大版初中七年级数学下册全册教案.docx》由会员分享,可在线阅读,更多相关《新北师大版初中七年级数学下册全册教案.docx(125页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章整式的乘除1.1同底数幕的乘法教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符 号感。2 .在已有的对暴的知识的了解基础之上,通过与同伴合作,经历探索同底数 幕乘法运算性质过程,进步体会哥的意义,发展合作交流能力、推理能 和有条理的表达能力。3 , 了解同底数募乘法的运算性质,并能解决些实际问题,感受数学与现实 生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、 解决问题的良好习惯。教学重点:同底数寻乘法的运算性质,并能解决些实际问题。教学过程:、复习回顾活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:/底数一= axaxx/it1
2、幕二、情境引入活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际 在列式计算时遇到了同底数昂相乘的形式,给出问题,启发学生进行独立思考,也可采用小 组合作交流的形式,结合学生现有的有关嘉的意义的知识,进行推导尝试,力争独立得出结 论。三、讲授新课1 .利用乘方的意义,提问学生,引出法则:计算1()3x102.解:103* l()2=(iox iox 10) x (10X 10)(幕的意义)=10X 10X 10X 10X 10 (乘法的结合律)=15.2 .引导学生建立嘉的运算法则:将上题中的底数改为a,则有a3 , a2= (aaa) (aa)aaaaa= a5,即
3、 a3 用字母m, n表示正整数,则有 am a aa am个a勤个a=aa a(mHi)个 a即 a01 an=am+n.3 .引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数辕相乘时,上述法则是否成立?要求学生叙述这个法则,并强调基的底数必须相同,相乘时指数才能相加.三、应用提高活动内容:1.完成课本“想一想:相辿等于什么?4 .通过组判断,区分“同底数轟的乘法”与“合并同类项”的不同之处。5 .独立处理例2,从实际情境中学会处理问题的方法。6 .处理随堂练习(可采用小组评分竞争
4、的方式,如时间紧,放于课下完成)。 四、拓展延伸活动内容:计算:(D-a2 - a6(4) (-7)8x73(5 ) (- 6)7 x 63(a - b)2 -(a-b)(8) (b -a)2 -(a-b)(-x) (-x)3 y1 , ym+(6 ) (-5)Sx53x(-5)4 .( 7 )(9)x5 x6 x3(10)-b3 b3(1l)-a (-a)3(12)(-a)2 , (a)3 , (-a)五、课堂小结活动内容:师生互相交流总结本节课上应该掌握的同底数塞的乘法的特征,教师对课堂 上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。六、布置作业1 .请你根据本节课
5、学习,把感受最深、收获最大的方面写成体会,用于小组交流。2 .完成课本习题1.4中所有习题。1.2哥的乘方与积的乘方(一)教学目标:I.经历探索篝的乘方运算性质的过程,进步体会箒的意义。了解辕的乘方 的运算性质,并能解决实际问题。2 .在探索制的乘方的运算性质的过程中,发展推理能力和有条理的表达能力。 学习塞的乘方的运算性质,提高解决问题的能力。3 .在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养 学习数学的信心,感爱数学的内在美。教学重点:会进行暴的乘方的运算。教学难点:哥的乘方法则的总结及运用。教学方法:尝试练习法,讨论法,归纳法。教学过程:、复习回顾活动内容:复习一学过
6、的舞的意义及基运算的运算法则(-) 幕的意义(二)=优+. (m、n 为正整数)同底数籌相乘,底数不变,指数相加。二、情境引入活动内容:根据已经学习过的知识,带领学生回忆并探讨以下实际问题1 .乙正方体的棱长是2 cm,则乙正方体的体积7=_cm3 。甲正方体的棱长是乙正方体的5倍,则甲正方体的体枳 V中=cm3 2 .乙球的半径为3 cm,则乙球的体积Vz = cm3甲球的半径是乙球的10倍,则甲球的体积V屮=cm3.如果甲球的半径是乙球的倍,那么甲球体积是乙球体积的 倍。地球、木星、太阳可以近似地看作球体。木星、太阳的半径分别约是地球的10倍 和IO倍,它们的体积分别约是地球的 倍和 倍.
7、三、探究新知活动内容:1.通过问题情境继续研究:为什么(IO?1 =16?让学生清楚运算之间的 关系,题目所描述的是10的2次基的三次方,其底数是箒的形式,然后根据索的意义展开 运算,去探究运算的过程。3 .计算下列各式,并说明理由.公)%(2) (a2)3;(3)(am)2;(4)(am)n.仿照前面,来研究以上四个题目的运算情况,实际上做到(3)题时可以猜想(4)题的 结果,也为后面暴的乘方的法则推导带来指导性。完成本节课的主要教学任务。通过上面的探索活动,发现了什么?幕的乘方,底数,指数。四、落实基础活动内容:一、完成教科书例题1【例1】计算:2 3(10(b5)5(3) (a11)3(
8、4)-(x2)m2 3(y ) y(6)2(a2)6 -、随堂练习计算:3 3(1)(10 )2 5 伞3 42(3)(xT-xz2 3 (4)(-x)z r2 2 2 (5)(-a)V)42(6)xx -x - x2,判断面计算是否正确?如果有错误请改正:五、联系拓广活动内容:把所学知识面拓广,耗的运算都在指数上做文章,这节课的拓广题,也是以 指数变化为主。(1) a12 = (a3) ( ) = (a2) ( ) = a3a( ( ) 3 = ( ) 4(2) 32 .严=3( )(3) y3n = 3, yS1 =t(a2) m+1 =,(5) ( a-b ) 32 = ( b-a )(
9、)(6)若 4.8m . 16m =29 则 m =J(7)如果2a = 3=6,2。= 12,那么a, b、c的关系是 s六、课堂小结活动内容:师生互相交流本堂课上应该掌握的事的乘方的特征,教师对课堂上发现的学 生掌握不好的地方给以强调。特别要注意已经学习过的两种辕的运算同底数毒的乘法与 幕的乘方,它们之间的整合也是这堂课要掌握的。七、布置作业:完成课本习题1.51.4嘉的乘方与积的乘方(二)教学目标:1.经历探索积的乘方的运算的性质的过程,进步体会哥的意义,发展推理 能力和有条理的表达能力。2. 了解枳的乘方的运算性质,并能解决些实际问题。教学重点:会进行积的乘方的运算。教学难点:正确区别
10、靠的乘方与积的乘方的异同。教学方法:探索、猜想、实践法。教学过程:、复习回顾:活动内容:复习前几节课学习的有关幕的三个知识点:1 .幕的意义2 .同底数暮的乘法运算法则M。*. (m、n为正整数)3 .累的乘方运算法则化,树都是正整数)二、探索交流活动内容:本环节是这节课最为重要的环节之一,教师应该注意在授课中学会调动学生 的学习兴趣,比如在课上可以对学生进行升级式提问:根据轟的意义,(ab表示什么?(2)为了计算(化简)算式ababab,可以应用乘法的交换律和结合律。又可以把它写成 什么形式?(3)由特殊的(ab)3=a3bJ出发,你能想到一般的公式吗?此环节的三个连贯性问题用到了刚刚复习到
11、的幕的意义及根据其建立的数学模型。三、知识扩充活动内容:1.借助刚刚探讨的结果,完成课本19页“做一做”的三个问题。7 ()(3X5) =3 X5.m ()(3X5) =3 X52 .学会复述积的乘方的运算法则:(ab) n=anbn积的乘方等于把各个因式分别乘方,再把所得的寨相乘。3 .公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质?怎样 用公式表示?4 .进步探讨出答案(abc)n=a,bn四、巩固新知活动内容:I.课本21页数学理解判断题:下面的计算是否正确?如有错误请改正.(1) (a)4 =“;(2)(一3pq)2 =-6p2/2 .课本【例2】计算:2542 n(3x)
12、:(2) (-2;(3) (-2灯);(4) (3a ).3 .【例3】地球可以近似地看做是球体,如果用V, r分别代表球的体积和半径,那么丫 =二万。地球的半径约为6Xl(f千米,它的体积大约是多少 3立方千米?4 .课本随堂练习1五、公式逆用活动内容:1.逆用的组相关习题(1)23X53;(2) 28X58(3) (-5)16 X (-2)15 ;(4) 24 X 44 X (-0. 125)42 .混合运算习题:(1 ) a a4 a+(a2)4 +(-2a4)2( 2 )2(,)“ -(3x3)3+(5x)2 x(3) 0,25100X4100(4)812X0. 12513六、提高练习
13、:l,i-| ff: -2looxO.5oox(-l)2003 -!-2、已知2 =3, 2 =4 求的值。23、已知=5 / =3求(产的值。4,已知a = 2, b = 3, c = 533,试比较a、b、c的大小。七、课堂小结:活动内容:师生互相交流本堂课上应该掌握的积的乘方的特征,教师对课堂上发现的学 生掌握不好的地方给以强调。特别要注意已经学习过的四种靠的运算之间的整合也是这堂课 要掌握的。、布置作业:完成课本习题1.61.5同底数嘉的除法教学目标:1. 了解同底数弃除法的运算性质,并解决些实际问题。2 .理解零指数哥和负指数幕的意义。3 .在进步体会基的意义的过程中,发展学生的推理
14、能力和有条理的表达能 力;提高学生观察、归纳、类比、概括等能力。4 .在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学 素养。教学重点:会进行同底数累的除法运算。教学难点:同底数案的除法法则的总结及运用。教学方法:尝试练习法,讨论法,归纳法。教学过程:、情境引入活动内容:一种液体每升含有!012个有害细菌,为了试验某种杀菌剂的效果,科学家们 进行了实验,发现1滴杀虫剂可以杀死10个此种细菌,要将1升液体中的有害细菌全 部杀死,需要这种杀菌剂多少滴?你是怎样计算的?二、了解同底数塞除法的运算及应用活动内容:活动1先让学生作“做做”:计算下列各式,并说明理由(mn)(l)1084-
15、105; (2)10+10; (3)(-3) -(-3);从中归纳出同底数慕除法的运算性质。从上面的练习中你发现了什么规律?猜 猜:aman =(a H0,都是正整数,且/)。三、同底数幕除法运算的应用活动内容:例1计算:(1)+;(2)(-x)6 (-x)3;(3)(xy)4+(xy);(4)+2+;(5)(/”)8 (一m);(6)(一加)4 x2例2:地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10 的若干次累。例如用里克特震级表示地宸是8级,说明地震的强度是101992年4月荷 兰发生了 5级地震,12天后,加利福尼亚发生了 7级地震。加利福尼亚地震强度是荷兰地
16、震强度的多少倍?(学生先想一想,再进行小组讨论,互相补充完善,并派代表回答)四、探索零指数塞和负整数指数塞的意义活动内容:想一想:10000104 ,16=241000=10 018=2c100=10 0 ,4=210=10 (),2=2()猜猜:1=10 01=2()20.01=10 0-=2 40.001=10 C- =2 ()8例3计算:用小数或分数分别表示下列各数: 10-3 (2)7 x 8-2 ;(3)1.6x10-4五、练习与提高活动内容:(一)基础题1 .下列计算中错误的有()(l)t/10 +=a (2)a5a -a = a5(3)(a)5 +(-4) = -a2 (4)3
17、= 3A.l个 B.2个 C.3个 D.4个2 .计算()3+(2y的结果正确的是()A. cTB.a“ C.-a D.a3 .用科学记数法表示下列各数: (1)0. 000876(2) -0. 0000001(二)能力题4 . 计 算:(1 )(x - 2 y )4 +(2y )+(x -2y)( 2 )+“x 加 +(y +(- % 5 .计算27 +9 +3=6.若3* =3=,求的32户,的值 六、课堂小结活动内容:师生耳相交流本节课的内容以及应用和需要注意的问题。七、布置作业课本P24习题1.7知识技能第1, 2题1.6整式的乘法(一)教学目标:1.经历探索单项式乘法法则的过程,在具
18、体情境中了解単项式乘法的意 义,理解单项式乘法法则。2 .会利用法则进行单项式的乘法运算。3 .理解单项式乘法运算的算理,发展学生有条理的思考能力和语言表达能力。4 .体验探求数学问题的过程,体验转化的思想方法,获得成功的体验。 教学重点:单项式乘法法则及其应用。教学难点:理解运算法则及其探索过程。教学过程:、复习回顾活动内容:教师提出问题,引导学生复习幕的运算性质 问题!:前面学习了哪三种事的运算?运算方法分别是什么? 让学生分别用语言和字母表示第的三种运算性质。问题2:运用幕的运算性质计算下列各题:(1) (-a5)5 (2) (一a2b了 、(一2a木3a2)3(4)(y)2yM二、实例
19、引入活动内容:提出学生身边的个实例,引出问题:七年级三班举办新年艺展示,小明的作品是用同样大小的纸精心制作的两幅剪贴画, 如右图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有-X米的空白,你能表示出两幅画的面枳吗?8教师提出以问题,引导学生对两个代数式进行分析:问题1:以上求矩形的面积时,会遇到x mx , (mx)-(-x),这是什么运算呢?4 ,学生回答:因为因式都是单项式,所以它们相乘是单项式乘以单项式的运算。问题2:什么是单项式?(表示数与字母的积的代数式叫做单项式)引入新课:我们知道,整式包括单项式和多项式,从这节课起我们就来研究整式的乘法, 先学习单项式
20、乘以单项式。三、探索法则活动内容:继续引导学生分析实例中出现的算式,教师提出以下三个问题:问题1:对于实际问题的结果mx, (mx)-(一mx)可以表达得更简单些吗?说说你的 4理山?问题2:类似地,3a2b 2ab3和(xyz) y?z可以表达的更简单一些吗?3a2b , 2ab3=(3X2)(a2 , a)(b b3)=6a3b4问题3:如何进行単项式与单项式相乘的运算?单项式乘法的法则:单项式与单项式相乘,把它们的系数、相同字母的寨分 别相乘,其余字母连同它的指数不变,作为积的因式。问题4:在你探索单项式乘法运算法则的过程中,运用了哪些运算律和运算法则?学生回答:运用了乘法的交换律、结合
21、律和同底数塞乘法的运算性质。四、及时训练活动内容:教师通过例题,使学生明确利用单项式乘法法则进行计算的方法。虽然是例 题,但是教师先不讲解,让学生尝试独立完成,教师根据学生遇到的问题和出现的错误,有 针对性地进行讲解和板书示范。同时教学中应通过恰当的方式让学生明确毎一部运算的依 据。例1计算:(l)(2xy2)-(jxy)(2)(-2).(一3。)(3)(4 x10)5x(5x104)(4)( 一 3a2b2). (-a3b2)5(5)(-a2bci)-(-c5)-(-ab2c)343随堂练习:1 .计算:(5(2)(2) (-3ab)-(-4b2)(2 .(-4孙2)2 . 一种电子计算机每
22、秒可做4xl()9次运算,它工作5x102秒,可做多少次运算?3I 个长方体形储货仓长4X10,cm,宽3X10、cm,高5X10?cm,求这个货仓的体枳。 五、拓展延伸活动内容:给出两个问题,让学生先独立思考解决,再交流讨论。1 .学以致用:一家住房的结构如图示,房子的主人打算把卧室以外的部分全都铺上地 病,至少需要多少平方米的地转?如果某种地砖的价格是a元/平方米,那么购买所需地砖 至少需要多少元?2 .讨论、探究:若(a加+-22T.=。5死 求加+ 的值。六、随堂测评活动内容:让学生独立完成以下各题(3) 计算: 31.5(5)(一2a2)(3x102).(-2x103)(一5+%)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 初中 七年 级数 下册 教案
限制150内