2023年八下平行四边形所有知识点总结和常考题型练习题.doc
《2023年八下平行四边形所有知识点总结和常考题型练习题.doc》由会员分享,可在线阅读,更多相关《2023年八下平行四边形所有知识点总结和常考题型练习题.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平行四边形知识点一、四边形相关 1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360。四边形的外角和定理:四边形的外角和等于360。推论:多边形的内角和定理:n边形的内角和等于180; 多边形的外角和定理:任意多边形的外角和等于360。2、多边形的对角线条数的计算公式设多边形的边数为n,则多边形的对角线条数为。3三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.二、平行四边形 1定义:两组对边分别平行的四边形是平行四边形 平行四边形的定义既是平行四边形的一条性质,又是一个鉴定方法2平行四边形的性质:平行四边形的有关性质和鉴定都是从 边、角、对角线 三个方面
2、的特性进行简述的(1)角:平行四边形的对角相等,邻角互补;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:; 平行四边形的对角线将四边形提成4个面积相等的三角形3平行四边形的判别方法定义:两组对边分别平行的四边形是平行四边形 方法1:两组对边分别相等的四边形是平行四边形方法2:一组对边平行且相等的四边形是平行四边形 方法3:两组对角分别相等的四边形是平行四边形方法4: 对角线互相平分的四边形是平行四边形三、矩形1. 矩形定义:有一个角是直角的平行四边形是矩形。2. 矩形性质边:对边平行且相等; 角:对角相等、邻角互补,矩形的四个角都是直角;对角
3、线:对角线互相平分且相等; 对称性:轴对称图形(对边中点连线所在直线,2条)3. 矩形的鉴定:满足下列条件之一的四边形是矩形有一个角是直角的平行四边形; 对角线相等的平行四边形; 四个角都相等辨认矩形的常用方法 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等 说明四边形ABCD的三个角是直角4. 矩形的面积 设矩形ABCD的两邻边长分别为a,b,则S矩形=ab四、菱形1. 菱形定义:有一组邻边相等的平行四边形是菱形。2. 菱形性质边:四条边都相等; 角:对角相等、邻角互补;对角线:对角线互相垂
4、直平分且每条对角线平分每组对角; 对称性:轴对称图形(对角线所在直线,2条)3. 菱形的鉴定:满足下列条件之一的四边形是矩形有一组邻边相等的平行四边形; 对角线互相垂直的平行四边形; 四条边都相等辨认菱形的常用方法 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等 先说明四边形ABCD为平行四边形,再说明对角线互相垂直 说明四边形ABCD的四条相等4. 菱形的面积设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=五、正方形1. 正方形定义:有一组邻边相等且有一个直角的平行四边形叫做正方形。它是最特殊的平行四边形,它既是平行
5、四边形,还是菱形,也是矩形。2. 正方形性质边:四条边都相等; 角:四角相等;对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; 对称性:轴对称图形(4条)3. 正方形的鉴定:满足下列条件之一的四边形是正方形 有一组邻边相等且有一个直角的平行四边形 有一组邻边相等的矩形; 对角线互相垂直的矩形 有一个角是直角的菱形 对角线相等的菱形;辨认正方形的常用方法 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等 先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等 先说明四边形ABCD为矩形,再说明矩形的一组邻边相等 先说明四边形ABCD为菱形
6、,再说明菱形ABCD的一个角为直角4. 正方形的面积 设正方形ABCD的一边长为a,则S正方形=;若正方形的对角线的长为a,则S正方形=六、梯形1. 梯形定义:一组对边平行而另一组对边不平行的四边形叫做梯形。等腰梯形:是一种特殊的梯形,它是两腰相等的梯形。特殊梯形尚有直角梯形(有一个角是直角)。2. 等腰梯形性质边:上下底平行但不相等,两腰相等; 角:同一底边上的两个角相等;对角互补;对角线:对角线相等; 对称性:轴对称图形(上下底中点所在直线)梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。3. 等腰梯形的鉴定:满足下列条件之一的梯形是等腰梯形 同一底两个底角相等的梯形; 对角线
7、相等的梯形辨认等腰梯形的常用方法 先说明四边形ABCD为梯形,再说明两腰相等 先说明四边形ABCD为梯形,再说明同一底上的两个内角相等 先说明四边形ABCD为梯形,再说明对角线相等4. 梯形的面积 设梯形ABCD的上底为a,下底为b,高为h,则S梯形=一、学习目的 复习平行四边形、特殊平行四边形、梯形的性质与鉴定,能运用它们进行计算或证明.二、学习重难点 重点:性质与鉴定的运用;难点:证明过程的书写。1平行四边形是特殊的 ;特殊的平行四边形涉及 、 、 。2梯形 (是否)特殊平行四边形, (是否)特殊四边形。3特殊的梯形涉及 梯形和 梯形。4、本章学过的四边形中,属于轴对称图形的有 ;属于中心
8、对称图形的有 。四、复习过程 (一)知识要点1:平行四边形的性质与鉴定OABCD1.平行四边形的性质:(1)从边看:对边 ,对边 ;(2)从角看:对角 ,邻角 ;(3)从对角线看:对角线互相 ;(4)从对称性看:平行四边形是 图形。2、平行四边形的鉴定:(1)鉴定1:两组对边分别 的四边形是平行四边形。(定义)(2)鉴定2:两组对边分别 的四边形是平行四边形。(3)鉴定3:一组对边 且 的四边形是平行四边形。(4)鉴定4:两组对角分别 的四边形是平行四边形。(5)鉴定5:对角线互相 的四边形是平行四边形。【基础练习】1.已知ABCD中,B=70,则A=_,C=_,D=_2.已知O是ABCD的对
9、角线的交点,AC=38 mm,BD=24 mm,AD=14 mm,那么BOC的周长等于_ _.3.如图1,ABCD中,对角线AC和BD交于点O,若AC=8,BD=6,则边AB长的取值范围是( ).A.1AB7 B.2AB14 C.6AB8 D.3AB44.不能鉴定四边形ABCD为平行四边形的题设是( )A.AB=CD,AD=BC B.ABCD C.AB=CD,ADBC D.ABCD,ADBC5.在ABCD中,AEBC于E,AFCD于F,AE=4,AF=6,ABCD的周长为40,则ABCD的面积是 ( )A、36 B、48 C、 40 D、24【典型例题】OABCD例1、若平行四边形ABCD的周
10、长是20cm,AOD的周长比ABO的周长大6cm.求AB,AD的长. 例2、 如图,已知四边形ABCD是平行四边形,BCD的平分线CF交边AB于F,ADC的平分线DG交边AB于G。(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得EFG为等腰直角三角形,并说明理由 【课堂练习】:BEFCAD1、已知:E、F是平行四边形ABCD对角线AC上的两点,且AE=CF,(1)试判断BE、CF的关系;(2)若E、F是平行四边形ABCD对角线AC延长线上的两点,上述结论还成立吗?说明理由 2、如图,四边形ABCD为平行四边形,M,N分别从D到从B到C运动,速度相同,E,F分别从A到B,
11、从C到D运动,速度相同,它们之间用绳子连紧。(1)没有出发时,这两条绳子有何关系?(2)若同时出发,这两条绳子尚有(1)中的结论吗?为什么?(二)知识要点2:特殊平行四边形的性质与鉴定1矩形:(1)性质:具有平行四边形的所有性质。此外具有:四个角都是 ,对角线互相平分并且 ,也是 图形。(2)鉴定:从角出发:有 个角是直角的平行四边形或有 个角是直角的四边形。从对角线出发:对角线 的平行四边形或对角线 且互相 的四边形。2菱形:(1)性质:具有平行四边形的所有性质。此外具有:四条边都 ,对角线互相 且 每一组对角,也是 图形。(2)鉴定:从边出发:一组 边相等的平行四边形或有 条边相等的四边形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年八下 平行四边形 所有 知识点 总结 题型 练习题
限制150内