博弈论完整课件[浙江大学]__GAME_Cha.ppt
《博弈论完整课件[浙江大学]__GAME_Cha.ppt》由会员分享,可在线阅读,更多相关《博弈论完整课件[浙江大学]__GAME_Cha.ppt(102页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Chapter 1 完全信息静态博弈完全信息静态博弈 Static Games of Complete Information In this chapter we consider games of the following simple form:first,the players simultaneously choose actions;then,the players receive payoffs that depend on the combination of actions just chosen.Within the class of such static(or sim
2、ultaneous-move)games,we restrict attention to games of complete information.That is each players payoff function(the function that determines the players payoff from the combination of actions chosen by the players)is common knowledge among all the players.教材教材P21 一、一、Normal-Form Representation of G
3、ames and Nash Equilibrium (一一)Normal-Form Representation of GamesIn the normal-form representation of a game,each player simultaneously chooses a strategy,and the combination of strategies chosen by the players determines a payoff for each player.We illustrate the normal-form representation with a c
4、lassical exampleThe prisoners Dilemma.Two suspects are arrested and charged with a crime.The police lack sufficient evidence to convict the suspects,unless at least one confesses.The police hold the suspects in separate cells and explain the consequences that will follow from the actions they could
5、take.If neither confesses then both will be convicted of a minor offense and sentenced to one year in jail.If both confess then both will be sentenced to jail five years.Finally,if one confesses but the other does not,then the confessor will be released immediately but the other will be sentenced to
6、 eight years in jailfive for the crime and a further three for obstructing justice(干扰司法干扰司法)。囚徒囚徒招认沉默招认沉默招认招认 5,-5 0,-8囚徒囚徒沉默沉默 -8,0 -1,-1 囚徒的困境囚徒的困境We now turn to the general case.The normal-form representation of a game specifies:(1)the players in the game;(2)the strategies available to each playe
7、r;(3)the payoff received by each player for each combination of strategies that could be chosen by the players.Definition:The normal-form representation of an-n-player game specifies the players strategy spaces S1,Sn and their payoff functions u1,un.We denote this game by G=S1,Sn;u1,un.教材教材22理解完全信息静
8、态博弈时要注意事项理解完全信息静态博弈时要注意事项 Although we stated that in a normal-form game the players choose their strategies simultaneously,this does not imply that the parties necessarily act simultaneously:it suffices that each choose his or her action without knowledge of the others choices,as would be the case“t
9、he prisonersdilemma”if the prisoners reached decisions at arbitrary times(在任意时间在任意时间)while in their separate cells.2 Here we may recognize complete information as that each player know the payoff functions of the others.(二二)Dominant-Strategy EquilibriumDefinition In the normal-form game G=S1,Sn;u1,u
10、n,let si and si be feasible strategies for player i (i.e.,si and si are members of Si).Strategy si is strictly dominated by strategy si if for each feasible combination of the others strategies,is payoff from playing si is strictly less than is payoff from playing si.i.e.:ui(s1,si-1,si*,si+1,sn)ui(s
11、1,si-1,si*,si+1,sn)(DS)for each s-i=(s1,si-1,si+1,sn)that can be constructed from the other playersstrategySpaces S1,Si-1,Si+1,Sn.WATSON P55 1 囚徒囚徒招认沉默招认沉默招认招认 5,-5 0,-8囚徒囚徒沉默沉默 -8,0 -1,-1 囚徒的困境囚徒的困境策略策略“沉默沉默”严格劣于策略严格劣于策略“招认招认”博弈分析的目的:预测博弈的均衡结果,博弈分析的目的:预测博弈的均衡结果,即给定即给定“每个参与人都是理性的每个参与人都是理性的”是共同知是共同知识
12、,什么是每个参与人的最优策略?什么是识,什么是每个参与人的最优策略?什么是所有参与人的最优策略组合?所有参与人的最优策略组合?*肯定性(肯定性(sure-thing)或替代性或替代性(substitution)公理公理:一个决策者在事件发生的偏好选项:一个决策者在事件发生的偏好选项胜于选项,并且在事件不发生时也胜于选项,并且在事件不发生时也偏好选项胜于选项,那么就有,他偏好选项胜于选项,那么就有,他在知道事件无论是发生还是不发生之在知道事件无论是发生还是不发生之前都应该偏好选项胜于选项。前都应该偏好选项胜于选项。“理性的参与人不会选择严格劣策略理性的参与人不会选择严格劣策略”俗语:已不变应万变
13、俗语:已不变应万变“重复剔除严格劣策略重复剔除严格劣策略(iterated elimination of strictly dominated strategies)”的思路:的思路:首先,找出某个参与人的严格劣策略,并首先,找出某个参与人的严格劣策略,并把它从他的策略空间中剔除,重新构造一个已把它从他的策略空间中剔除,重新构造一个已不包含该严格劣策略的博弈;不包含该严格劣策略的博弈;其次,剔除新博弈中某个参与人的严格劣其次,剔除新博弈中某个参与人的严格劣策略;策略;重复上述过程,直到只剩下唯一的策略组重复上述过程,直到只剩下唯一的策略组合。合。我们认为这个唯一所剩的策略组合是稳定我们认为这个
14、唯一所剩的策略组合是稳定的。的。Definition In a normal-form game,if for each player i,si is is dominant strategy,than we call the strategies profile(s1,sn)the dominant-strategy equilibrium.参与人参与人左中右左中右上上 1,0 1,2 0,1参与人参与人下下 0,3 0,1 2,0策略组合(上,中)是均衡结局,将实现支付策略组合(上,中)是均衡结局,将实现支付(1,2)。)。第一第二第三 参与人参与人左中右左中右上上,4,0 5,3参与人中
15、参与人中 4,0 0,4 5,3下下 3,5 3,5 6,6每个参与人都不存在严格劣策略每个参与人都不存在严格劣策略(三)纳什均衡(三)纳什均衡 Definition In the n-player normal-form game G=S1,Sn;u1,un,the strategies(s1*,sn*)are a Nash equilibrium if,for each player i,si*is(at least tied for(至少不劣于)至少不劣于))player is best response to the strategies specified for the n-1 o
16、ther players,(s1*,sn-1*,sn+1*,sn*):ui(s1*,sn-1*,si*,sn+1*,sn*)ui(s1*,sn-1*,si ,sn+1*,sn*).(NE)for every feasible strategy si in Si;That is,si*solves max ui(s1*,sn-1*,si,sn+1*,sn*).siSi 上述均衡概念是上述均衡概念是1951年由数学家约翰年由数学家约翰纳什纳什(John Nash)首先解释清楚的,所以将他所解首先解释清楚的,所以将他所解释的均衡称为纳什均衡。释的均衡称为纳什均衡。*对纳什均衡的理解:对纳什均衡的理解
17、:1 If game theory is to provide a unique solution to a game-theoretic problem then the solution must be a Nash equilibrium,in the following sense.Suppose that game theory makes a unique prediction about the strategy each player will choose.In order for this prediction to be correct,it is necessary t
18、hat each player be willing to choose the strategy predicted by the theory.Thus each players predicted strategy must be that players best response to the strategies of the other players.Such a prediction could be called strategically stable or self-enforcing,because no single player wants to deviate
19、from his or her Predicted strategy.We will call such a prediction a Nash equilibrium.-Robert Gibbons P82 是这样的一种稳定的策略组合:当所有参与是这样的一种稳定的策略组合:当所有参与人的选择公开以后,每个人都满意自己作出了正人的选择公开以后,每个人都满意自己作出了正确的选择;没有人能得到更好的结果了。在博弈确的选择;没有人能得到更好的结果了。在博弈论中这种结果被称为论中这种结果被称为NE。3 为了理解纳什均衡的哲学含义,让我们为了理解纳什均衡的哲学含义,让我们设想设想n个参与人在博弈之前协商
20、达成一个协议,个参与人在博弈之前协商达成一个协议,规定每一个参与人选择一个特定的策略。我们规定每一个参与人选择一个特定的策略。我们要问的一个问题是,给定其他参与人都遵守这要问的一个问题是,给定其他参与人都遵守这个协议,在没有外在强制的情况下,是否有任个协议,在没有外在强制的情况下,是否有任何人有积极性不遵守这个协议?显然,只有当何人有积极性不遵守这个协议?显然,只有当遵守协议带来的效用大于不遵守协议时的效用,遵守协议带来的效用大于不遵守协议时的效用,一个人才会遵守这个协议。如果没有任何参与一个人才会遵守这个协议。如果没有任何参与人有积极性不遵守这个协议,我们说这个协议人有积极性不遵守这个协议,
21、我们说这个协议是可以自动实施的(是可以自动实施的(self-enforcing),),这个协这个协议就构成一个纳什均衡;否则,它就不是一个议就构成一个纳什均衡;否则,它就不是一个纳什均衡。(张维迎纳什均衡。(张维迎,P68)4 纳什均衡是一种策略组合,使得每个参与纳什均衡是一种策略组合,使得每个参与人的策略是对其他参与人策略的最优放应。人的策略是对其他参与人策略的最优放应。纳什均衡是博弈将会如何进行的纳什均衡是博弈将会如何进行的“一致一致”(consistent)预测,这意指,如果所有参与人预预测,这意指,如果所有参与人预测特定纳什均衡会出现,那么没有参与人有动力测特定纳什均衡会出现,那么没有
22、参与人有动力采用与均衡不同的行动。因此纳什均衡(采用与均衡不同的行动。因此纳什均衡(也只有也只有纳什均衡纳什均衡)能具有性质使得参与人能预测到它,)能具有性质使得参与人能预测到它,预测到他们的对手也会预测到它,如此继续。与预测到他们的对手也会预测到它,如此继续。与之相反,任何固定的非纳什均衡如果出现就意味之相反,任何固定的非纳什均衡如果出现就意味着至少有一个参与人着至少有一个参与人“犯了错犯了错”,或者是对对手行,或者是对对手行动的预测上犯了错,或者是(给定那种预测)在动的预测上犯了错,或者是(给定那种预测)在最大化自己的收益时犯了错。最大化自己的收益时犯了错。(Jean Tirole)P10
23、 纳什均衡通过了一致预测检验并不就使得它纳什均衡通过了一致预测检验并不就使得它们是好的预测,在一些博弈格局中如果认为可们是好的预测,在一些博弈格局中如果认为可以获得精确预测那会过于轻率,由此我们想提以获得精确预测那会过于轻率,由此我们想提请注意一个事实,博弈的最可能结果实际上取请注意一个事实,博弈的最可能结果实际上取决于比标准式所提供的更多的信息。例如,可决于比标准式所提供的更多的信息。例如,可能希望知道参与人对于此类博弈具有多少经验,能希望知道参与人对于此类博弈具有多少经验,他们是否来自同一种文化因此而分县分享关于他们是否来自同一种文化因此而分县分享关于博弈将会如何进行的特定期望,以及如此等
24、等。博弈将会如何进行的特定期望,以及如此等等。(Jean Tirole)P10-11A brute-force approach(一个最直接的方法一个最直接的方法)to finding a games Nash equilibrium is simply to check whether each possible combination of strategies satisfies condition(NE)in the definition.In a two-player game,this approach begins as follows:for each player,and f
25、or each feasible strategy for that player,determine the other players best response to each of that strategy.划线法划线法 画箭头法画箭头法 参与人参与人左中右左中右上上,4,0 5,3参与人中参与人中 4,0 0,4 5,3下下 3,5 3,5 6,6每个参与人都不存在严格劣策略每个参与人都不存在严格劣策略(下,右)是(下,右)是NE,将实现支付(将实现支付(6,6)囚徒囚徒招认沉默招认沉默招认招认 5,-5 0,-8囚徒囚徒沉默沉默 -8,0 -1,-1囚徒的困境囚徒的困境(沉默,沉
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江大学 博弈论 完整 课件 _GAME_Cha
限制150内