数学建模-微分方程模型ppt课件.ppt
《数学建模-微分方程模型ppt课件.ppt》由会员分享,可在线阅读,更多相关《数学建模-微分方程模型ppt课件.ppt(123页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值数学建模数学建模 微分方程模型微分方程模型关晓飞关晓飞同济大学数学科学学院同济大学数学科学学院资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值一、什么是微分方程?一、什么是微分方程?最最简单的例子最最简单的例子资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值引例引例 一曲线通过点(一曲线通过点(1 1,2 2),且在该曲线
2、任一点),且在该曲线任一点M M(x,y x,y)处的切线的斜率为处的切线的斜率为2 2x x,求该曲线的方程。,求该曲线的方程。解解 因此,所求曲线的方程为因此,所求曲线的方程为 若设曲线方程为若设曲线方程为 ,又因曲线满足条件又因曲线满足条件 根据导数的几何意义可知未知函数满足关系式根据导数的几何意义可知未知函数满足关系式:对(对(1 1)式两端积分得:)式两端积分得:代入(代入(3 3)得)得C1 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值回答什么是微分方程:n建立关于未知变量、建立关于未知变量、n未知变量
3、的导数以及未知变量的导数以及n自变量的方程自变量的方程 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值二、微分方程的解法二、微分方程的解法积分方法,分离变量法积分方法,分离变量法资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值可分离变量的微分方程可分离变量的微分方程可分离变量的微分方程可分离变量的微分方程.解法解法为微分方程的解为微分方程的解.分离变量法分离变量法资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增
4、值,其增值的这部分资金就是原有资金的时间价值例例1 1 求解微分方程求解微分方程解解分离变量分离变量两端积分两端积分典型例题典型例题资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值过定点的积分曲线过定点的积分曲线;一阶一阶:二阶二阶:过定点且在定点的切线的斜率为定值的积分曲线过定点且在定点的切线的斜率为定值的积分曲线.初值问题初值问题:求微分方程满足初始条件的解的问题求微分方程满足初始条件的解的问题.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间
5、价值例例2.解初值问题解解:分离变量得两边积分得即由初始条件得 C=1,(C 为任意常数)故所求特解为资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值三、建立微分方程数学模型三、建立微分方程数学模型1、简单的数学模型、简单的数学模型2、复杂的数学模型、复杂的数学模型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值1、简单的数学模型、简单的数学模型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资
6、金就是原有资金的时间价值 利用微分方程求实际问题中未知函数的一般步骤是:利用微分方程求实际问题中未知函数的一般步骤是:(1)(1)分析问题,设所求未知函数,建立微分方分析问题,设所求未知函数,建立微分方程,确定初始条件;程,确定初始条件;(2)(2)求出微分方程的通解;求出微分方程的通解;(3)(3)根据初始条件确定通解中的任意常数,求根据初始条件确定通解中的任意常数,求出微分方程相应的特解出微分方程相应的特解 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 实际问题需寻求某个变量实际问题需寻求某个变量y 随另一变量
7、随另一变量 t 的的变化规律变化规律:y=y(t).直接求直接求很困难很困难 建立关于未知变量、建立关于未知变量、未知变量的导数以及未知变量的导数以及自变量的方程自变量的方程 建立变量能满足建立变量能满足的微分方程的微分方程?哪一类问题哪一类问题资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值在工程实际问题中在工程实际问题中 “改变改变”、“变化变化”、“增加增加”、“减少减少”等关等关键词提示我们注意什么量在变化键词提示我们注意什么量在变化.关键词关键词“速率速率”,“增长增长”,“衰变衰变”,“边际边际的的”,常涉
8、及到导数常涉及到导数.建建立立方方法法常常用用微微分分方方程程运用已知物理定律运用已知物理定律 利用平衡与增长式利用平衡与增长式 运用微元法运用微元法应用分析法应用分析法机理分机理分析法析法资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值建立微分方程模型时建立微分方程模型时应用已知物理定律,应用已知物理定律,可事半功倍可事半功倍一、运用已知物理定律一、运用已知物理定律资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值例例1 1 铀的衰变规律问题:
9、放射性元素由于不断地铀的衰变规律问题:放射性元素由于不断地有原子放射出微粒子变成其他元素,铀的含量有原子放射出微粒子变成其他元素,铀的含量不断的减少,这种现象称为衰变,由原子物理不断的减少,这种现象称为衰变,由原子物理学知道,铀的衰变速度与当时未衰变的原子的学知道,铀的衰变速度与当时未衰变的原子的含量含量M M成正比,已知成正比,已知t t0 0时刻铀的含量为时刻铀的含量为 ,求在衰变过程中铀的含量求在衰变过程中铀的含量M M(t t)随时间随时间t t的变化的变化规律。规律。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时
10、间价值铀的衰变速度就是铀的衰变速度就是 对时间对时间t的导数的导数 ,解解 因此,因此,由于衰变速度与其含量成正比,可知未知函数满足由于衰变速度与其含量成正比,可知未知函数满足关系式关系式:对上式两端积分得:对上式两端积分得:是衰变系数是衰变系数且初始条件且初始条件分离变量得分离变量得代入初始条件得代入初始条件得所以有,所以有,这就是铀的衰变规律这就是铀的衰变规律。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 例例2 一个较热的物体置于室温为一个较热的物体置于室温为180c的的房间内,该物体最初的温度是房间内,该物
11、体最初的温度是600c,3分钟以后分钟以后降到降到500c.想知道它的温度降到想知道它的温度降到300c 需要多少时需要多少时间?间?10分钟以后它的温度是多少?分钟以后它的温度是多少?一、运用已知物理定律一、运用已知物理定律资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 牛顿冷却(加热)定律:牛顿冷却(加热)定律:将温度为将温度为T的物体的物体放入处于常温放入处于常温 m 的介质中时,的介质中时,T的变化速率的变化速率正比于正比于T与周围介质的温度差与周围介质的温度差.分析分析:假设房间足够大,放入温度较低或较:假
12、设房间足够大,放入温度较低或较高的物体时,室内温度基本不受影响,即室温高的物体时,室内温度基本不受影响,即室温分布均衡分布均衡,保持为保持为m,采用牛顿冷却定律是一个,采用牛顿冷却定律是一个相当好的近似相当好的近似.建立模型建立模型:设物体在冷却过程中的温度为设物体在冷却过程中的温度为T(t),t0,资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值“T的变化速率正比于的变化速率正比于T与周围介质的温度差与周围介质的温度差”翻译为翻译为数学语言数学语言建立微分方程建立微分方程其中参数其中参数k 0,m=18.求得一般解为
13、求得一般解为资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 ln(Tm)=k t+c,代入条件代入条件:求得求得c=42,,最后得最后得 T(t)=18+42 ,t 0.结果结果:T(10)=18+42 =25.870,该物体温度降至该物体温度降至300c 需要需要8.17分钟分钟.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值二二.利用平衡与增长式利用平衡与增长式 许多研究对象在数量上常常表现出某种许多研究对象在数量上常常表现出某种不变不
14、变的特性的特性,如封闭区域内的能量、货币量等,如封闭区域内的能量、货币量等.利用变量间的平衡与增长特性利用变量间的平衡与增长特性,可分析和建可分析和建立有关变量间的相互关系立有关变量间的相互关系.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值解解例例1 1 某车间体积为某车间体积为12000立方米立方米,开始时空气中含开始时空气中含有有 的的 ,为了降低车间内空气中为了降低车间内空气中 的的含量含量,用一台风量为每秒用一台风量为每秒2000立方米的鼓风机通立方米的鼓风机通入含入含 的的 的新鲜空气的新鲜空气,同时以同
15、样的风同时以同样的风量将混合均匀的空气排出量将混合均匀的空气排出,问鼓风机开动问鼓风机开动6分钟分钟后后,车间内车间内 的百分比降低到多少的百分比降低到多少?设鼓风机开动后设鼓风机开动后 时刻时刻 的含量为的含量为在在 内内,的通入量的通入量的排出量的排出量资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值的通入量的通入量的排出量的排出量的改变量的改变量6分钟后分钟后,车间内车间内 的百分比降低到的百分比降低到资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资
16、金的时间价值二二.利用平衡与增长式利用平衡与增长式 例例2 2 简单人口增长模型简单人口增长模型 对某地区时刻对某地区时刻 t 的人口总数的人口总数N(t),除考虑个,除考虑个体的体的出生、死亡出生、死亡,再进一步考虑迁入与迁出,再进一步考虑迁入与迁出的影响的影响.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 在很短的时间段在很短的时间段t 内内,关于关于N(t)变化的一个变化的一个最简单的模型是:最简单的模型是:t时间内的人口增长量时间内的人口增长量=t内出生人口数内出生人口数t内死亡人口数内死亡人口数+t内迁入
17、人口数内迁入人口数t内迁出人口数内迁出人口数 t时间内的净改变量时间内的净改变量=t时间内输入量时间内输入量t时间内输出量时间内输出量 般般化化更更一一基本模型基本模型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值三三.微元法微元法 基本思想基本思想:通过分析研究对象的有关变量在通过分析研究对象的有关变量在 一个很短时间内的变化情况一个很短时间内的变化情况.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值例例 一个高为一个高为2米的球体容器里
18、盛了一半米的球体容器里盛了一半的水,水从它的底部小孔流出,小孔的横截面的水,水从它的底部小孔流出,小孔的横截面积为积为1 1平方厘米平方厘米.试求放空容器所需要的时间试求放空容器所需要的时间.2米对孔口的流速做两条假设对孔口的流速做两条假设:1t 时刻的流速时刻的流速v 依赖于依赖于此刻容器内水的高度此刻容器内水的高度h(t).2 整个放水过程无能整个放水过程无能量损失。量损失。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值分析分析:放空容器放空容器?容器内水的体积为零容器内水的体积为零容器内水的高度为零容器内水的高
19、度为零 模型建立:模型建立:由水力学知:水从孔口流出的由水力学知:水从孔口流出的流量流量Q为通过为通过“孔口横截面的水的体积孔口横截面的水的体积V对时对时间间t 的变化率的变化率”,即即资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值S孔口横截面积(单位:平方厘米)孔口横截面积(单位:平方厘米)h(t)水面高度(单位:厘米)水面高度(单位:厘米)t时间(单位:秒)时间(单位:秒)当当S=1平方厘米平方厘米,有有h(t)h+hr1r2水位降低水位降低体积变化体积变化资金是运动的价值,资金的价值是随时间变化而变化的,是时间
20、的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 在在t,t+t 内,内,水面高度水面高度 h(t)降至降至h+h(h10ti 11-1/i0t 1di/dt 1/i(t)先升后降至先升后降至0P2:s01/i(t)单调降至单调降至01/阈值阈值P3P4P2S0资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型模型4SIR模型模型预防传染病蔓延的手段预防传染病蔓延的手段 (日接触率日接触率)卫生水平卫生水平 (日日治愈率治愈率)医疗水平医疗水平 传染病不蔓延的条件传染病不蔓延的条件s01/的估计的
21、估计 降低降低 s0提高提高 r0 提高阈值提高阈值 1/降低降低 (=/),群体免疫群体免疫资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型模型4SIR模型模型被传染人数的估计被传染人数的估计记被传染人数比例记被传染人数比例x 03)经济增长的条件经济增长的条件资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值劳动力增长率小于初始投资增长率劳动力增长率小于初始投资增长率每个劳动力的产值每个劳动力的产值 Z(t)=Q(t)/L(t)增增长长d
22、Z/dt03)经济增长的条件经济增长的条件资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值3 正规战与游击战正规战与游击战战争分类:正规战争,游击战争,混合战争战争分类:正规战争,游击战争,混合战争只考虑双方兵力多少和战斗力强弱只考虑双方兵力多少和战斗力强弱兵力因战斗及非战斗减员而减少,因增援而增加兵力因战斗及非战斗减员而减少,因增援而增加战斗力与射击次数及命中率有关战斗力与射击次数及命中率有关建模思路和方法为用数学模型讨论社会建模思路和方法为用数学模型讨论社会领域的实际问题提供了可借鉴的示例领域的实际问题提供了可借鉴
23、的示例第一次世界大战第一次世界大战Lanchester提出预测战役结局的模提出预测战役结局的模型型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值一般模型一般模型 每方战斗减员率取决于双方的兵力和战斗力每方战斗减员率取决于双方的兵力和战斗力 每方非战斗减员率与本方兵力成正比每方非战斗减员率与本方兵力成正比 甲乙双方的增援率为甲乙双方的增援率为u(t),v(t)f,g 取决于战争类型取决于战争类型x(t)甲方兵力,甲方兵力,y(t)乙方兵力乙方兵力模型模型假设假设模型模型资金是运动的价值,资金的价值是随时间变化而变化的,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 微分方程 模型 ppt 课件
限制150内