2023年七下数学知识点归纳.doc
《2023年七下数学知识点归纳.doc》由会员分享,可在线阅读,更多相关《2023年七下数学知识点归纳.doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章:整式的乘除单项式 整 式多项式整式的运算同底数幂的乘法幂的乘方积的乘方 幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。2、单项式的数字因数叫做单项式的系数。3、单项式中所有字母的指数和叫做单项式的次数。4、单独一个数或一个字母也是单项式。5、只具有字母因式的单项式的系数是1或1。6、单独的一个数字是单项式,它的系数是它自身。7、单独的一个非零常数的次数是0。8、单项式中只能具有乘法或乘方运算,而不能
2、具有加、减等其他运算。9、单项式的系数涉及它前面的符号。10、单项式的系数是带分数时,应化成假分数。11、单项式的系数是1或1时,通常省略数字“1”。12、单项式的次数仅与字母有关,与单项式的系数无关。二、多项式1、几个单项式的和叫做多项式。2、多项式中的每一个单项式叫做多项式的项。3、多项式中不含字母的项叫做常数项。4、一个多项式有几项,就叫做几项式。5、多项式的每一项都涉及项前面的符号。6、多项式没有系数的概念,但有次数的概念。7、多项式中次数最高的项的次数,叫做这个多项式的次数。三、整式1、单项式和多项式统称为整式。2、单项式或多项式都是整式。3、整式不一定是单项式。4、整式不一定是多项
3、式。5、分母中具有字母的代数式不是整式;而是此后将要学习的分式。四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分派率。2、几个整式相加减,关键是对的地运用去括号法则,然后准确合并同类项。3、几个整式相加减的一般环节:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。(2)按去括号法则去括号。(3)合并同类项。4、代数式求值的一般环节:(1)代数式化简。(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。五、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。2、底数相同
4、的幂叫做同底数幂。3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:aman=am+n。4、此法则也可以逆用,即:am+n = aman。5、开始底数不相同的幂的乘法,假如可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。六、幂的乘方1、幂的乘方是指几个相同的幂相乘。(am)n表达n个am相乘。2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。3、此法则也可以逆用,即:amn =(am)n=(an)m。七、积的乘方1、积的乘方是指底数是乘积形式的乘方。2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=an
5、bn。3、此法则也可以逆用,即:anbn =(ab)n。八、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。(3)对于具有3个或3个以上的运算,法则仍然成立。2、不同点:(1)同底数幂相乘是指数相加。(2)幂的乘方是指数相乘。(3)积的乘方是每个因式分别乘方,再将结果相乘。九、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:aman=am-n(a0)。2、此法则也可以逆用,即:am-n = aman(a0)。十、零指数幂1、零指数幂的意义:任何不等于
6、0的数的0次幂都等于1,即:a0=1(a0)。十一、负指数幂1、任何不等于零的数的p次幂,等于这个数的p次幂的倒数,即:注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。十二、整式的乘法(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。2、系数相乘时,注意符号。3、相同字母的幂相乘时,底数不变,指数相加。4、对于只在一个单项式中具有的字母,连同它的指数一起写在积里,作为积的因式。5、单项式乘以单项式的结果仍是单项式。6、单项式的乘法法则对于三个或三个以上的单项式相乘同样合用。(二)单项式与多项式相乘1
7、、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分派率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。2、运算时注意积的符号,多项式的每一项都涉及它前面的符号。3、积是一个多项式,其项数与多项式的项数相同。4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每
8、一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。3、多项式的每一项都包含它前面的符号,拟定积中每一项的符号时应用“同号得正,异号得负”。4、运算结果中有同类项的要合并同类项。5、对于具有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。十三、平方差公式1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。2、平方差公式中的a、b可以是单项式,也可以是多项式。3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。4、平方差公式还能简化两数之积的运算,
9、解这类题,一方面看两个数能否转化成(a+b)(a-b)的形式,然后看a2与b2是否容易计算。十四、完全平方公式1、即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。2、公式中的a,b可以是单项式,也可以是多项式。3、掌握理解完全平方公式的变形公式:(1)(2)(3)4、完全平方式:我们把形如:的二次三项式称作完全平方式。5、当计算较大数的平方时,运用完全平方公式可以简化数的运算。6、完全平方公式可以逆用,即:十五、整式的除法(一)单项式除以单项式的法则1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里具有的字母,则
10、连同它的指数一起作为商的一个因式。2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是提成系数、相同字母与不相同字母三部分分别进行考虑。(二)多项式除以单项式的法则1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表达为:2、多项式除以单项式,注意多项式各项都涉及前面的符号。第二章相交线与平行线余角余角补角补角角两线相交对顶角平行线与相交线同位角三线八角内错角同旁内角平行线的鉴定平行线平行线的性质尺规作图一、平行线与相交线平行线:在同一平面内,不相交的两条直线叫做平行线。若两条直线只有一个公共点,我们称这两条直线为相交线。二、余角
11、与补角1、假如两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。2、假如两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。5、余角和补角的性质用数学语言可表达为:(1)则(同角的余角(或补角)相等)。(2)且则(等角的余角(或补角)相等)。6、余角和补角的性质是证明两角相等的一个重要方法。三、对顶角1、两条直线相交成四个角,其中不相邻的两个角是对顶角。2、一个角的两边分别是另一个
12、角的两边的反向延长线,这两个角叫做对顶角。3、对顶角的性质:对顶角相等。4、对顶角的性质在此后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。四、垂线及其性质1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。2、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。五、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角
13、。3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。六、六类角1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。2、余角、补角只有数量上的关系,与其位置无关。3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。4、对顶角既有数量关系,又有位置关系。七、平行线的鉴定方法1、同位角相等,两直线平行。2、内错角相等,两直线平行。3、同旁内角互补,两直线平行。
14、4、在同一平面内,假如两条直线都平行于第三条直线,那么这两条直线平行。5、在同一平面内,假如两条直线都垂直于第三条直线,那么这两条直线平行。八、平行线的性质1、两直线平行,同位角相等。2、两直线平行,内错角相等。3、两直线平行,同旁内角互补。4、平行线的鉴定与性质具有互逆的特性,其关系如下:在应用时要对的区分积极向上的题设和结论。九、尺规作线段和角1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。3、尺规作图中直尺的功能是:(1)在两点间连接一条线段;(2)将线段向两方延长。4、尺规作图中圆规的功能是:(1)以任意一点为圆心,任意长
15、为半径作一个圆;(2)以任意一点为圆心,任意长为半径画一段弧;5、纯熟掌握以下作图语言:(1)作射线;(2)在射线上截取=;(3)在射线上依次截取=;(4)以点为圆心,为半径画弧,交于点;(5)分别以点、点为圆心,以、为半径作弧,两弧相交于点;(6)过点和点画直线(或画射线);(7)在的外部(或内部)画=;6、在作较复杂图形时,涉及基本作图的地方,不必反复作图的具体过程,只用一句话概括叙述就可以了。(1)画线段=;(2)画=;第三章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的鉴定ASAAASHL(合
16、用于Rt)全等三角形的应用运用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“”表达。2、顶点是A、B、C的三角形,记作“ABC”,读作“三角形ABC”。3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表达,顶点A所对的边BC用a表达,边AC、AB分别用b,c来表达;4、A、B、C为ABC的三个内角。二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。用字母可表达为a+bc,a+cb,b+ca;a-bc,a-cb,b-cc,a+cb,b+ca同时成立时,
17、能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。3、拟定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“Rt”表达“直角三角形”,其中直角C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。注:直角三角形的性质:直角三角形的两个锐角互余。(3)钝角三角形,即有一个内角是钝角的三角形。3、鉴定一个三角形的
18、形状重要看三角形中最大角的度数。4、直角三角形的面积等于两直角边乘积的一半。5、任意一个三角形都具有六个元素,即三条边和三个内角。都具有三边关系和三内角之和为1800的性质。6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线。2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中
19、线。(2)三角形有三条中线,它们相交于三角形内一点。4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。(2)任意三角形都有三条高线,它们所在的直线相交于一点。区别相同中线平分对边三条中线交于三角形内部(1)都是线段(2)都从顶点画出(3)所在直线相交于一点角平分线平分内角三条角平分线交于三角表内部高线垂直于对边(或其延长线)锐角三角形:三条高线都在三角形内部直角三角形:其中两条恰好是直角边钝角三角形:其中两条在三角表外部五、全等图形1、两个可以重合的图形称为全等图形。2、全等图形的性质:全等图形的形状和大小都相同。3、
20、全等图形的面积或周长均相等。4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可。5、全等图形在平移、旋转、折叠过程中仍然全等。6、全等图形中的相应角和相应线段都分别相等。六、全等分割1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。2、对一个图形全等分割:(1)一方面要观测分析该图形,发现图形的构成特点;(2)另一方面要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完毕。七、全等三角形1、可以重合的两个三角形是全等三角形,用符号“”连接,读作“全等于”。2、用“”连接的两个全等三角形,表达相应顶点的字母写在相应的位置上。3、全等三角形的性质:全等三角形的相应边、相应
21、角相等。这是此后证明边、角相等的重要依据。4、两个全等三角形,准确鉴定相应边、相应角,即找准相应顶点是关键。八、全等三角形的鉴定1、三边相应相等的两个三角形全等,简写为“边边边”或“SSS”。2、两角和它们的夹边相应相等的两个三角形全等,简写为“角边角”或“ASA”。3、两角和其中一角的对边相应相等的两个三角形全等,简写为“角角边”或“AAS”。4、两边和它们的夹角相应相等的两个三角形全等,简写为“边角边”或“SAS”。5、注意以下内容(1)三角形全等的鉴定条件中必须是三个元素,并且一定有一组边相应相等。(2)三边相应相等,两边及夹角相应相等,一边及任意两角相应相等,这样的两个三角形全等。(3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年七下 数学 知识点 归纳
限制150内