2023年高三数列知识点与题型总结文科.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023年高三数列知识点与题型总结文科.doc》由会员分享,可在线阅读,更多相关《2023年高三数列知识点与题型总结文科.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 数列考点总结第一部分 求数列的通项公式一、数列的相关概念与表达方法(见辅导书)二、求数列的通项公式四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。求数列通项的方法的基本思绪是:把所求数列通过变形,代换转化为等差数列或等比数列。 求数列通项的基本方法是:累加法和累乘法。 一、累加法 1合用于: -这是广义的等差数列 累加法是最基本的二个方法之一。若,则 两边分别相加得 例1 已知数列满足,求数列的通项公式。例2 已知数列满足,求数列的通项公式。练习1.已知数列的首项为1,且写出数列的通
2、项公式. 答案:练习2.已知数列满足,求此数列的通项公式. 答案:裂项求和 评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。例3.已知数列中, 且,求数列的通项公式.练习3 已知数列满足,求数列的通项公式。二、累乘法 1、合用于: 累乘法是最基本的二个方法之二。若,则两边分别相乘得,例4 已知数列满足,求数列的通项公式。例5.设是首项为1的正项数
3、列,且(=1,2, 3,),则它的通项公式是=_.三、待定系数法 合用于 基本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。1形如,其中)型(1)若c=1时,数列为等差数列;(2)若d=0时,数列为等比数列;(3)若时,数列为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设,得,与题设比较系数得,所以所以有:因此数列构成认为首项,以c为公比的等比数列,所以 即:.规律:将递推关系化为,构导致公比为c的等比数列从而求得通项公式逐项相减法(阶差法):有时我们从递推关系中把n换成n-1有,两式相减有从而化为公比为c的等比数列,进而求得通项公
4、式. ,再运用类型(1)即可求得通项公式.我们看到此方法比较复杂.例6、已知数列中,求数列的通项公式。2形如: (其中q是常数,且n0,1) 若p=1时,即:,累加即可.若时,即:,求通项方法有以下三种方向:i. 两边同除以.目的是把所求数列构导致等差数列即: ,令,则,然后类型1,累加求通项.ii.两边同除以 . 目的是把所求数列构导致等差数列。 即: ,令,则可化为.然后转化为类型5来解,iii.待定系数法:目的是把所求数列构导致等差数列设.通过比较系数,求出,转化为等比数列求通项.注意:应用待定系数法时,规定pq,否则待定系数法会失效。例7、已知数列满足,求数列的通项公式。 练习3.(2
5、023陕西卷文)已知数列满足, .令,证明:是等比数列;()求的通项公式。答案:(1)是以1为首项,为公比的等比数列。(2)。总结:四种基本数列1形如型 等差数列的广义形式,见累加法。2.形如型 等比数列的广义形式,见累乘法。3.形如型(1)若(d为常数),则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;(2)若f(n)为n的函数(非常数)时,可通过构造转化为型,通过累加来求出通项;或用逐差法(两式相减)得,分奇偶项来分求通项.4.形如型(1)若(p为常数),则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;(2)若f(n)为n的函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 数列 知识点 题型 总结 文科
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内