小学数学知识点例题精讲《几何计数(一)》学生版.docx
《小学数学知识点例题精讲《几何计数(一)》学生版.docx》由会员分享,可在线阅读,更多相关《小学数学知识点例题精讲《几何计数(一)》学生版.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、7-8-1几何计数(一)教学目标1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想知识要点一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的常用的方法有枚举法、加法原理和乘法原理法以及递推法等n条直线最多将平面分成 个部分;n个圆最多分平面的部分数为n(n-1)+2;n个三角形将平面最多分成
2、3n(n-1)+2部分;n个四边形将平面最多分成4n(n-1)+2部分在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等解题时需要仔细审题、综合所学知识点逐步求解排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关二、几何计数分类数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有1
3、5条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个例题精讲模块一、简单的几何计数【例 1】 七个同样的圆如右图放置,它有_条对称轴【考点】简单的几何计数 【难度】1星 【题型】填空【关键词】迎春杯,六年级,初赛,试题【解析】 如图:6条【答案】条【例 2】 下面的表情图片中:,没有对称轴的个数为( )(A) 3 (B) 4 (C) 5 (D) 6【考点】简单的几何计
4、数 【难度】2星 【题型】选择【关键词】华杯赛,初赛,第1题【解析】 通过观察可知,第1,2,5这三张图片是有对称轴的,其他的5张图片都没有对称轴,所以没有对称轴的个数为5,正确答案是C.【答案】【巩固】 中心对称图形是:绕某一点旋转180后能和原来的图形重合的图形,轴对称图形是:沿着一条直线对折后两部分完全重合的图形,图的4个图形中,既是中心对称图形又是的轴对称图形的有 个. 【考点】简单的几何计数 【难度】2星 【题型】填空【关键词】希望杯,五年级,一试,第7题【解析】 共有3个,除第二个外其余都是.【答案】个【例 3】 两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条
5、直线,它们两两相交,并且“夹角”只能是30,60或90.问:至多有多少条直线?【考点】简单的几何计数 【难度】1星 【题型】填空【关键词】华杯赛,初赛,试题,第12题【解析】 至多有6条直线,如图:【答案】条【例 4】 下图是王超同学为环境保护专栏设计的一个报头,用到基本的几何图形:线段、三角形、四边形、圆、弧线,其中用得最多的一种图形是_ .【考点】简单的几何计数 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第9题【解析】 观察图形发现是:线段最多【答案】线段最多【例 5】 下面的和图中共有_个正方形 【考点】简单的几何计数 【难度】2星 【题型】解答【解析】 在的图中,边长为
6、1的正方形个;边长为2的正方形个; 边长为3的正方形个;边长为4的正方形个;边长为5的正方形有,总共有 (个)正方形在的图中边长为1的正方形个;边长为2的正方形个; 边长为3的正方形个;边长为4的正方形个;总共有 (个)【答案】个【巩固】 请看下图,共有多少个正方形? 【考点】简单的几何计数 【难度】2星 【题型】填空【关键词】【解析】 假设最小的正方形边长为1,则面积为1的正方形有9个;面积为4的正方形有4个;面积为16的正方形有1个因此共有9+4+1=14个【答案】个【巩固】 如下图是一个围棋盘,它由横竖各19条线组成问:围棋盘上有多少个右图中的小正方形一样的正方形? 【考点】简单的几何计
7、数 【难度】3星 【题型】填空【关键词】华杯赛,初赛,试题,第15题【解析】 我们先在右图小正方形中找一个代表点,例如右下角的点E作为代表点然后将小正方形按题意放在围棋盘上,仔细观察点E应在什么地方通过观察,不难发现:【解析】 (1)点E只能在棋盘右下角的正方形ABCD(包括边界)的格子点上【解析】 (2)反过来,右下角正方形ABCD中的每一个格子点都可以作为小正方形的点E,也只能作为一个小正方形的点E【解析】 这样一来,就将“小正方形的个数”化为“正方形ABCD中的格子点个数”了很容易看出正方形ABCD中的格子点为1010100个答:共有100个.【答案】个【例 6】 下图中共有_个正方形【
8、考点】简单的几何计数 【难度】2星 【题型】解答【解析】 每个正方形中有:边长为1的正方形有个;边长为2的正方形有个; 边长为3的正方形有个;边长为4的正方形有个;总共有(个)正方形现有5个的正方形,它们重叠部分是4个的正方形因此,图中正方形的个数是【答案】【例 7】 图中有_个正方形【考点】简单的几何计数 【难度】2星 【题型】解答【解析】 的正方形1个;的正方形4个;的正方形5个;22的正方形4个;11的正方形13个共27个【答案】【巩固】 数一数:图中共有_ 个正方形.【考点】简单的几何计数 【难度】3星 【题型】填空【关键词】希望杯,四年级,二试,第10题【解析】 按面积从小到大4+1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何计数一 小学 数学 知识点 例题 几何 计数 学生
限制150内