小学数学知识点例题精讲《计数之归纳法》学生版.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《小学数学知识点例题精讲《计数之归纳法》学生版.docx》由会员分享,可在线阅读,更多相关《小学数学知识点例题精讲《计数之归纳法》学生版.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、7-6-1.计数之归纳法教学目标前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法对这些计数方法与技巧要做到灵活运用例题精讲从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系【例 1】 如图所示,在22方格中,画一条直线最多穿过3个方格;在33方格中,画一条直线最多穿过5个方可知;那么在55方格中,画一条直线,最多穿过 个方格.【考点】计数之归纳法 【难度】2星 【题型】填空【关键词】希望杯,四年级
2、,复赛,第14题,6分【解析】 边长每多1,穿过的方格多2,那么55的最多穿过3+2+2+2=9个方格【答案】【例 2】 一条直线分一个平面为两部分两条直线最多分这个平面为四部分问5条直线最多分这个平面为多少部分?【考点】计数之归纳法 【难度】3星 【题型】解答【解析】 方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,时的情形,于是得到下表: 由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n条直线时,最多可将平面分成2+2+3+4+n=+1个部分方法二:如果已有k条直线,再增加一条直线,这条直线与前k条直线的交点至多k个,因而至多被分成k+1段,每一段将原有的
3、部分分成两个部分,所以至多增加k+1个部分于是3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分一般的有k条直线最多将平面分成:1+1+2+k=+1个部分,所以五条直线可以分平面为16个部分【答案】【巩固】平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?【考点】计数之归纳法 【难度】4星 【题型】解答【解析】 假设用ak表示k条直线最多能把圆的内部分成的部分数,这里k0,1,2,a01a1=a0+12a2=a12=4a3=a23=7a4=a3+411故5条直线可以把圆分成16部分,
4、100条直线可以把圆分成5051部分【答案】部分【例 3】 平面上10个两两相交的圆最多能将平面分割成多少个区域?【考点】计数之归纳法 【难度】4星 【题型】解答【解析】 先考虑最简单的情形为了叙述方便,设平面上个圆最多能将平面分割成个部分从图中可以看出,可以发现满足下列关系式:实际上,当平面上的()个圆把平面分成个区域时,如果再在平面上出现第个圆,为了保证划分平面的区域尽可能多,新添的第个圆不能通过平面上前个圆之间的交点这样,第个圆与前面个圆共产生个交点,如下图:这个交点把第个圆分成了段圆弧,而这段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了个部分所以,那么,故10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计数之归纳法 小学 数学 知识点 例题 计数 归纳法 学生
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内