全国青年教师数学大赛高中数学优秀教案、教学设计及说课稿《函数的概念》.pdf
《全国青年教师数学大赛高中数学优秀教案、教学设计及说课稿《函数的概念》.pdf》由会员分享,可在线阅读,更多相关《全国青年教师数学大赛高中数学优秀教案、教学设计及说课稿《函数的概念》.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 普通高中课程标准实验教科书数学必修 第一章第一章 集合与函数概念集合与函数概念 12 函数及其表示函数及其表示 121 函数概念的教案说明函数概念的教案说明 新疆乌鲁木齐八一中学新疆乌鲁木齐八一中学 王丽娟王丽娟 教学目标 教学目标 知识要求目标:知识要求目标:1 正确理解函数的概念,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用 2 通过大量实例理解构成函数的三个要素 3 掌握判定两个函数是否相等的方法 能力发展目标:能力发展目标:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,培养学生的抽象概括能力。德育渗透目标:让学生体会现实世界充
2、满变化,要用发展的眼光看待问题。教学重点:函数的概念,函数的三要素。开公开课备亮点找素材尽在高中数学公开课优质课信息融合课QQ群865257936 教学导图:教学导图:分析教材中的三个实例 引出函数的概念 与初中函数概念进行比较,明确现在函数的优越性 大量例举生活实例深刻理解函数的概念 了解函数的三要素 判定两个函数是否相等 例题处理 课堂练习 课堂小结 课下作业 教学难点:教学难点:函数概念的本质及符号()的理解 教学方法:教学方法:建构主义观点的教学方式,即通过大量实例,遵循“特殊到一般”的认识规律,提出问题,大胆猜想,确定方向,分组研究,尝试验证,归纳总结;通过搭建新概念与学生原有认识结
3、构间的桥梁,使学生心理上得到认同,建立新的认识结构。教学手段:教学手段:发挥计算机快捷,生动,形象,人脑延续的特点,提供直观的感性材料,帮助学生实施研究方法,激发并维持学习兴趣。教学过程:创设情景:今天我们学习函数,函数一词是德国数学家莱布尼兹首先采用的,后经维布伦,林纳用集合与对应的观点,揭示了函数概念的本质,我国请代数学家李善兰在翻译代数学时,首先把“function”译成函数且给出定义“凡式中含天,为天之函数”。所以我们今天学习的函数,要感谢这些为数学奉献的数学家们。复习回顾:初中时我们已学过函数的概念:在变化过程中,有两个变量 x 和 y,如果给定一个 x 值,相应地也就确定了一个 y
4、 值,那么我们称 y 是 x 的函数,其中 x 是自变量,y 是因变量,x 的取值范围叫定义域,y 的取值范围叫值域。下面我们来看这样一个实例 新课讲授:新课讲授:实例(1)一枚炮弹发射后,经过 26s 落到地面击中目标,炮弹的射高为 845m,且炮弹距地面的高度 h(单位:m)随时间 t(单位:s)变化的规律是 h=130t-5t A=t|0t26,B=h|0h845 我们发现,对于数集 A 中的任意一个时间 t,按照对应关系 h=130t-5t,在数集 B 中都有唯一确定的高度 h 和它对应,满足函数定义,应为函数。发现解析式可以用来刻画函数。实例(2)近几年来,大气层中的臭氧迅速减少,因
5、而出现了臭氧空洞问题,图中曲线显示了南极上空臭氧层空洞的面积从 19792001 年的变化情况。引导学生看图启发,从图中明显得知,对于数集 A 中的每一个时刻 t 都对应t 时刻时曲线在该点的纵坐标。即在数集 B 中都有唯一确定的臭氧层空洞面积 s与之对应,满足函数定义,也应为函数。发现图像也可以来刻画函数。实例(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化。时间(年)1991 1992 1993 199419951996 199719981999 2000
6、 2001城镇居民家庭恩格尔系数(%)53.8 52.9 50.1 49.949.948.6 46.444.541.9 39.2 37.9 若记 A=t|1991t2001 且 tZ,B=53.8、52.9 学生探讨交流发现,对于表格中的任意一个时间 t 都有唯一确定的恩格尔系数与之对应,即在数集 A 中的任意一个时间 t 在数集 B 中都有唯一确定的恩格尔系数与之对应,满足函数定义,应为函数。发现表格也可以用来刻画函数。教师及时提问:这三个实例的不同点和共同点是什么?学生认真思考,在教师启发点拨下,归纳总结 不同点:实例(1)用解析式刻画变量之间的对应关系 实例(2)同图像刻画变量之间的对应
7、关系 实例(2)同表格刻画变量之间的对应关系 共同点:都有两个非空数集 两个数集间都有一种确定的对应关系,即按照这种对应关系对于集合A 中任意一个数,在集合 B 中都有唯一确定的数与之对应。因此,究其函数的本质,我们用集合和对应的观点给出函数全新的定义。一般地,设 A、B 是非空的数集,如果按照某种确定的对应关系 f,使对于集合 A中的任意一个数 x,在集合 B 中都有唯一确定的数()和它对应,那么就称 f:AB 为从集合 A 到集合 B 的一个函数。记作:(),xA 引导学生深刻体会定义的要点和所满足的条件 强调:强调:函数首先是两个数集之间建立的对应 对于 x 的每一个值,按照某种确定的对
8、应关系 f,都有唯一的 y 值与它对应,这种对应应为数与数之间的一一对应或多一对应 认真理解()的含义:()是一个整体,()并不表示 f 与 x 的乘积,它是一种符号,它可以是解析式,如实例(1);也可以是图像,如实例(2);也可以是表格,如实例(3);()如同一个加工厂,把把输入的数 x,按照某种加工过程如解析式,图像,表格,加工称另外一个数值 y。x 叫自变量,x 的取值范围 A 叫做函数的定义域 y 叫函数值,y 的取值范围 C=()|xA叫做函数的值域且 CB 强调定义域,值域都是一个集合且值域是集合 B 的子集 引导学生举例说明为什么值域是集合 B 的子集 那么这个函数的定义与以往的
9、函数定义有何区别和联系那?引导学生思考,提高分析问题解决问题的能力 这两种定义实质上是一致的,即它们的定义域和值域的意义完全相同,对应关系本质也一样,只不过叙述的出发点不同,初中给出的定义是从运动变化的观点出发,其中对应关系是将自变量x的每一个取值与唯一确定的函数y对应起来;高中给出的定义是从集合对应的观点出发,其中的对应关系是将 A 集合中的任一元素与 B 集合中的唯一确定的元素对应起来,这样定义逃脱了物理运动的束缚,更加完美。教师再及时引导,既然函数是一个整体,那构成函数定义有几个要素分别是什么?问题清晰,学生马上给出解答。函数的三要素:定义域,值域和对应法则 强调三者却一不可,但值域可由
10、定义域和对应法则唯一确定。如同加工厂中,原料确定,加工过程确定,最后加工后的产品也得以确定。为加深对函数概念及函数定义三要素的理解,教师马上引导学生举出生活中的一些函数的实例,并指出函数的三要素.教师应给出适时评价,归纳并恰当鼓励,并展示例 1.例1.判断下列那些是函数 (1)气压()510 Pa0.5 1.0 2.05.010沸点()81 100 121152179(2)(3)(4)22yx xx|x0 学生总结发现(1)(2)是函数(3)(4)不是函数 说明:并非所有的函数都是解析式,并非解析式都是函数,函数与解析式之间是既不充分也不必要的关系!适时引导学生,既然(1)(2)均为函数,那么
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数的概念 全国 青年教师 数学 大赛 高中数学 优秀 教案 教学 设计 说课稿 函数 概念
限制150内