【2022高中数学精品教案】1.4 充分条件与必要条件(1).docx





《【2022高中数学精品教案】1.4 充分条件与必要条件(1).docx》由会员分享,可在线阅读,更多相关《【2022高中数学精品教案】1.4 充分条件与必要条件(1).docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章集合与常用逻辑用语1.4充分条件与必要条件本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一, 它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.课程目标学
2、科素养A.正确理解充分不必要条件、必要不充分条件、充要条件的概念;B.会判断命题的充分条件、必要条件、充要条件C.通过学习,使学生明白对条件的判定应该归结为判断命题的真假.D.在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质1.数学抽象:充分条件、必要条件、充要条件的含义;2.逻辑推理:判断命题的充分条件、必要条件、充要条件;3.直观想象:对条件的判定应该归结为判断命题的真假。1.教学重点:理解充分条件、必要条件、充要条件的意义,掌握命题条件的充要性判断及其证明方法;2.教学难点:命题条件充要性的判断及其证明。多媒体教学过程落实核心素养目标一、 情景引入,温故知新情景1:如图所示
3、电路中(整个电路及灯泡一切正常),记p:闭合开关A, q:灯泡亮。请把这个电路图改写为“若p,则q”形式的命题并判断真假。【答案】真命题情景2:记p:x 2, q:x 0 。判断命题“若x 2 ,则 x 0”的真假。【答案】真命题二、探索新知探究一 充分条件与必要条件的含义1.思考:下列“若P,则q”形式的命题中,哪些是真命题?哪些是假命题?(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形;(2)若两个三角形的周长相等,则这两个三角形全等;(3)若 (4)若平面内两条直线a和b均垂直于直线l,则a/b。【答案】(1)真 (2)假 (3) 假 (4)真2、归纳新知(1)充分条件、必要条
4、件的含义一般地,用p、q分别表示两个命题,如果命题p成立,可以推出命题q也成立,即,那么p叫做q的充分条件, p叫做q 的必要条件. P足以导致q,也就是说条件p充分了;q是p成立所必须具备的前提.(2)3.思考:下列“若P,则q”形式的命题中,p是q的什么条件?(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形;(2)若两个三角形的周长相等,则这两个三角形全等;(3)若 (4)若平面内两条直线a和b均垂直于直线l,则a/b。【解析】(1)、(4)中,p是q的充分条件,q是p的必要条件;(2)、(3)中, p不是q的充分条件,q不是p的必要条件【解析】(1)这是一条平行四边形的判定定理
5、, 所以p是q的充分条件;(2)这是一条相似三角形的判定定理,所以p是q的充分条件;(3)这是一条菱形的性质定理,,所以p是q的充分条件;(4)由于, 所以p不是q的充分条件。(5)由等式的性质知,所以p是q的充分条件。(6)为无理数,但为有理数,所以p不是q的充分条件。4、思考:例1中命题(1)给出了“四边形是平行四边形”的一个充分条件,这样的充分条件唯一吗?若不唯一,那么你能给出不同的充分条件吗?【解析】四边形的两组对边分别相等,四边形的一组对边平行且相等,四边形的两条对角线互相平分都是其充分条件。结论:一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件。解:(1)这是一
6、条平行四边形的性质定理,所以q是p的必要条件;(2)这是一条相似三角形的性质定理,所以q是p的必要条件;(3)如图,四边形ABCD的对角线互相垂直,但它不是菱形,所以q不是p的必要条件;(4)显然, 所以q不是p的必要条件。(5)由于 所以q不是p的必要条件;(6)为无理数,但1,不全是无理数,所以q不是p的必要条件。思考:例2中命题(1)给出了“四边形是平行四边形”的一个必要条件,这样的必要条件唯一吗?若不唯一,你能给出几个其它的必要条件吗?【解析】四边形的两组对边分别相等,四边形的一组对边平行且相等,四边形的两条对角线互相平分都是其必要条件。【结论】一般地,数学中的每一条性质定理都给出了相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高中数学精品教案 【2022高中数学精品教案】1.4 充分条件与必要条件1 2022 高中数学 精品 教案 1.4 充分 条件 必要条件

限制150内