【高中数学竞赛专题大全】 竞赛专题2 函数(50题竞赛真题强化训练)试卷.docx
《【高中数学竞赛专题大全】 竞赛专题2 函数(50题竞赛真题强化训练)试卷.docx》由会员分享,可在线阅读,更多相关《【高中数学竞赛专题大全】 竞赛专题2 函数(50题竞赛真题强化训练)试卷.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【高中数学竞赛专题大全】 竞赛专题2 函数(50题竞赛真题强化训练)一、单选题1(2019全国高三竞赛)函数的定义域为,若满足(1)在内是单调函数;(2)存在,使在上的值域为,则称为“闭函数”.现知是闭函数,那么的取值范围是().ABCD2(2018全国高三竞赛)表示不超过实数x的最大整数,设N为正整数则方程在区间中所有解的个数是()ABCD3(2019全国高三竞赛)设是给定的常数,是上的奇函数,且在上递增. 若,那么,的变化范围是().AB或CD4(2019贵州高三竞赛)方程组的解的组数是()A5B6C7D85(2020浙江温州高一竞赛)已知实数a,b满足:对于任意的实数x,不等式恒成立,则
2、的取值范围为()A1,+)B,+)C,+)D,+)二、填空题6(2018湖南高三竞赛)设,函数(其中表示对于,当时表达式的最大值),则的最小值为_.7(2018天津高三竞赛)若为正实数,且是奇函数,则不等式的解集是_8(2020江苏高三竞赛)已知集合,则满足的函数:共有_个9(2021全国高三竞赛)若函数的定义域为,值域为,则实数t的取值范围是_.10(2018山东高三竞赛)函数的值域为_(其中表示不超过实数的最大整数)11(2021浙江金华第一中学高三竞赛)设为定义在上的函数若正整数满足,则的所有可能值之和为_12(2020江苏高三竞赛)已知函数是定义在上的奇函数,若为偶函数,且,则实数的最
3、大值为_13(2021全国高三竞赛)已知st是关于x的整系数方程的两根,则当正整数a取得最小值时,_.14(2021全国高三竞赛)方程的不同的实数解的个数为_.15(2018河北高二竞赛)已知且,则的最大值为_.16(2018河南高三竞赛)已知、均为正数,则的最大值为_17(2018甘肃高三竞赛)已知函数(),函数满足(),若函数恰有2019个零点,则所有这些零点之和为_18(2018甘肃高三竞赛)关于的方程有唯一实数解,则实数的取值范围是_19(2019上海高三竞赛)若直线axby+2=0(a0,b0)和函数的图象均恒过同一个定点,则的最小值为_.20(2019重庆高三竞赛)设A为三元集合(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学竞赛专题大全 【高中数学竞赛专题大全】 竞赛专题2 函数50题竞赛真题强化训练试卷 高中数学 竞赛 专题 大全 函数 50 强化 训练 试卷
限制150内