数学专题:应用性问题.doc
《数学专题:应用性问题.doc》由会员分享,可在线阅读,更多相关《数学专题:应用性问题.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、应用性问题高考要求数学应用题是指利用数学知识解决其他领域中的问题 高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求 重难点归纳 1 解应用题的一般思路可表示如下:2 解应用题的一般程序(1)读 阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础 (2)建 将文字语言转化为数学语言,利用数学知识,建立相应的数学模型 熟悉基本数学模型,正确进行建“模”是关键的一关 (3)解 求解数学模型,得到数学结论 一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程 (4)答 将数学结论还原给实际问题的结果 3 中学
2、数学中常见应用问题与数学模型(1)优化问题 实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决 (2)预测问题 经济计划、市场预测这类问题通常设计成“数列模型”来解决 (3)最(极)值问题 工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值 (4)等量关系问题 建立“方程模型”解决(5)测量问题 可设计成“图形模型”利用几何知识解决 典型题例示范讲解 例1为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A孔流入,经沉淀后从B孔流出,设箱体的长度为a米,高度为b米,已知流出的水中该杂质的质量分数与a、b的乘
3、积ab成反比,现有制箱材料60平方米,问当a、b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)?命题意图 本题考查建立函数关系、不等式性质、最值求法等基本知识及综合应用数学知识、思想与方法解决实际问题能力 知识依托 重要不等式、导数的应用、建立函数关系式 错解分析 不能理解题意而导致关系式列不出来,或a与b间的等量关系找不到 技巧与方法 关键在于如何求出函数最小值,条件最值可应用重要不等式或利用导数解决 解法一 设经沉淀后流出的水中该杂质的质量分数为y,则由条件y=(k0为比例系数)其中a、b满足2a+4b+2ab=60 要求y的最小值,只须求ab的最大值 由(
4、a+2)(b+1)=32(a0,b0)且ab=30(a+2b)应用重要不等式a+2b=(a+2)+(2b+2)4ab18,当且仅当a=2b时等号成立 将a=2b代入得a=6,b=3 故当且仅当a=6,b=3时,经沉淀后流出的水中该杂质的质量分数最小 解法二 由2a+4b+2ab=60,得,记(0a30)则要求y的最小值只须求u的最大值 由,令u=0得a=6且当0a6时,u0,当6u30时u0,在a=6时取最大值,此时b=3 从而当且仅当a=6,b=3时,y=取最小值 例2某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相等 为保护城市环境,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 专题 应用性 问题
限制150内