【2022高中数学精品教案】8.3.1 棱柱、棱锥、棱台的表面积和体积(1).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《【2022高中数学精品教案】8.3.1 棱柱、棱锥、棱台的表面积和体积(1).docx》由会员分享,可在线阅读,更多相关《【2022高中数学精品教案】8.3.1 棱柱、棱锥、棱台的表面积和体积(1).docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8.3.1 棱柱、棱锥、棱台的表面积和体积本节课选自普通高中课程标准数学教科书-必修第二册(人教A版)第八章立体几何初步,本节课主要学习棱柱、棱锥、棱台的表面积和体积的表面积、体积公式及其求法,还有简单组合体的体积的求解。教材从分析简单几何体的侧面展开图得到了它们的表面积公式,体现了立体问题平面化的解决策略,这是本节课的灵魂,也是立体几何的灵魂,在立体几何中,要注意将立体问题转化为平面几何问题,在教学中应加以重视。课程目标学科素养A.通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积与体积的求法B会求棱柱、棱锥、棱台有关的组合体的表面积与体积1.数学抽象:棱柱、棱锥、棱台的表面积与体积
2、的公式;2.逻辑推理:推导棱柱、棱锥、棱台的表面积与体积的公式;3.数学运算:求棱柱、棱锥、棱台及有关组合体的表面积与体积;4.直观想象:棱柱、棱锥、棱台体积之间的关系。1.教学重点:棱柱、棱锥、棱台的表面积与体积;2.教学难点:求棱柱、棱锥、棱台有关的组合体的表面积与体积多媒体教学过程教学设计意图核心素养目标一、 复习回顾,温故知新1.北京奥运会场馆图2. 北京奥运会结束后,国家对体育场馆都进行了改造,从专业比赛场馆逐步成为公众观光、健身的综合性体育场馆,国家游泳中心也完成了上述变身,新增了内部开放面积,并建成了大型的水上乐园经营方出于多种考虑,近几年内“水立方”外墙暂不承接商业化广告,但出
3、于长远考虑,决定为水立方外墙订制特殊显示屏,届时“水立方”将重新焕发活力,大放异彩能否计算出“水立方”外墙所用显示屏的面积?3.学生回答下列公式矩形面积、三角形面积、梯形面积、长方体体积、正方体体积4.在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?二、探索新知探究:棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?思考1:棱柱的侧面展开图是什么?如何计算它的表面积?侧面展开图是几个矩形,表面积是上下底面面积与侧面展开图的面积的和。思考2:棱锥的侧面展开图是什么?如何计算它的表面积?【答案】棱锥的侧面展开图是几个三
4、角形。表面积是侧面展开图的面积加上底面积。思考3:棱台的侧面展开图是什么?如何计算它的表面积?【答案】侧面展开图为几个梯形,表面积为侧面几个梯形面积的和再加上上下底面面积。1.结论: 棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和例1.四面体P-ABCD的各棱长均为a,求它的表面积。解:因为是正三角形,其边长为a,所以,因此,四面体P-ABC 的表面积2.一般棱柱的体积公式也是V = Sh,其中S为底面面积,h为高(即两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这点与垂足(垂线与底面的交点)之间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高中数学精品教案 【2022高中数学精品教案】8.3.1 棱柱、棱锥、棱台的表面积和体积1 2022 高中数学 精品 教案 8.3 棱柱 棱锥 表面积 体积
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内