【2022高中数学精品教案】7.1.1 条件概率 教学设计.docx
《【2022高中数学精品教案】7.1.1 条件概率 教学设计.docx》由会员分享,可在线阅读,更多相关《【2022高中数学精品教案】7.1.1 条件概率 教学设计.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、7.1.1 条件概率 本节课选自2019人教A版高中数学选择性必修第三册,第七章随机变量及其分布列,本节课主本节课主要学习条件概率.学生已经学习了有关概率的一些基础知识,对一些简单的概率模型(如古典概型、几何概型)已经有所了解。条件概率是学生接触到的又一个全新的概率模型。一方面,它是对古典概型计算方法的巩固,另一方面,为后续研究独立事件打下良好基础。这一概念比较抽象,学生较难理解。遇到具体问题时,学生常因分不清是P(B|A)还是P(AB)而导致出错。基于此,在本节的教学中,应特别注意对于条件概率概念的生成,借助图示形象直观地展现条件概率概念的生成过程。 课程目标学科素养A.通过实例,了解条件概
2、率的概念;B.掌握求条件概率的两种方法;C.能利用条件概率公式解决一些简单的实际问题;D.通过条件概率的形成过程,体会由特殊到一般的思维方法.1.数学抽象:条件概率的概念 2.逻辑推理:条件概率公式的推导 3.数学运算:运用条件概率公式计算概率4.数学建模:将相关问题转化为条件概率重点:运用条件概率的公式解决简单的问题难点:条件概率的概念多媒体教学过程教学设计意图核心素养目标一、 问题导学 在必修“概率” 一章的学习中,我们遇到过求同一实验中两个事件A与B同时发生(积事件AB)的概率的问题,当事件A与B相互独立时,有P(AB)=P(A)P(B) 如果事件A与B不独立,如何表示积事件AB的概率呢
3、?下面我们从具体问题入手.二、 新知探究问题1 . 某个班级有45名学生,其中男生、女生的人数及团员的人数如表所示,在班级里随机选一人做代表,(1)选到男生的概率是多大?(2)如果已知选到的是团员,那么选到的是男生的概率是多大?团员非团员合计男生16925女生14620合计301545随机选择一人作代表,则样本空间𝛀包含45个等可能的样本点.用A表示事件“选到团员”, B表示事件“选到男生” ,根据表中的数据可以得出n()=45, n(A)=30, n(B)=25.(1)根据古典概型知识可知选到男生的概率P(B) =n(B)n()=2545=59.(2)“在选择团员的条件下,选
4、到男生”的概率就是“在事件A发生的条件下,事件B发生” 的概率,记为P(B|A).此时相当以A为样本空间来考虑B发生概率,而在新的样本空间中事件B就是积事件AB,包含了样本点数nAB=16.根据古典概型知识可知:P(B|A) =n(AB)n(A)=1630=815.问题2. 假定生男孩和生女孩是等可能的,现考虑有两个小孩的家庭,随机选一个家庭,那么(1)该家庭中两个小孩都是女孩的概率是多大?(2)如果已经知道这个家庭有女孩,那么两个小孩都是女孩的概率又是多大?观察两个小孩的性别,用b表示男孩,g表示女孩,则样本空间=bb,bg,gb,gg,且所有样本点是等可能的.用A表示事件“选择家庭中有女孩
5、” ,B表示事件“选择家庭中两个孩子都是女孩” ,A =bg,gb,gg,B=gg.(1) 根据古典概型知识可知,该家庭中两个小孩都是女孩的概率P(B) =n(B)n()=14.(2)“在选择的家庭有女孩的条件下,两个小孩都是女孩” 的概率就是在“事件A发生的条件下,事件B发生” 的概率,记为P(B|A) ,此时A成为样本空间,事件B就是积事件AB,根据古典概型知识可知P(B|A) =n(AB)n(A)=13.分析:求P(B|A)的一般思想ABABW因为已经知道事件A 必然发生,所以只需在A 发生的范围内考虑问题,即现在的样本空间为A.因为在事件A发生的情况下事件B 发生,等价于事件A 和事件
6、 B 同时发生,即AB发生.所以事件A 发生的条件下,事件B 发生的概率P(B|A) =n(AB)n(A). 为了把这个式子推广到一般情形,不妨记原来的样本空间为W,则有P(B|A) =n(AB)n(W)n(A)n(W)=P(AB)P(A). 一般地,当事件B发生的概率大于0时(即P(B)0),已知事件B发生的条件下事件A发生的概率,称为条件概率,记作P(B|A),而且P(B|A)=P(AB)P(A).问题1. 如何判断条件概率?题目中出现“在已知前提下(或条件下)”“在A发生的条件下”等关键词,表明这个前提已成立或条件已发生,此时通常涉及条件概率.问题2. P(B|A)与P(A|B)的区别是
7、什么?P(B|A)表示在事件A发生的条件下,B发生的概率.P(A|B)表示在事件B发生的条件下,A发生的概率.条件概率与事件独立性的关系探究1:在问题1和问题2中,都有P(B|A)P(B).一般地, P(B|A)与P(B)不一定相等。如果P(B|A)与P(B)相等,那么事件A与B应满足什么条件?直观上看,当事件A与B相互独立时,事件A发生与否不影响事件B发生的概率,这等价于P(B|A)=P(B)成立.事实上,若事件A与B相互独立,即PAB=PAPB,且PA0,则PBA=P(AB)PA=PAPBPA=PB;反之,若PBA=PB,且PA0,则PB=PABPAPAB=PAPB 探究2:对于任意两个事
8、件A与B,如果已知P(A)与P(B|A),如何计算P(AB)呢?由条件概率的定义,对任意两个事件A与B,若P(A)0,则P(AB)=P(A)P(B|A).我们称上式为概率的乘法公式(multiplication formula).条件概率的性质条件概率只是缩小了样本空间,因此条件概率同样具有概率的性质.设P(A)0,则(1)P(|A)=1;(2)如果B和C是两个互斥事件,则P(BUC |A)=P(B | A)+P(C | A);(3)设B和B互为对立事件,则P( B|A)=1- P(B|A).三、典例解析例1.在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,抽出的题不再放回.求:
9、(1)第1次抽到代数题且第2次抽到几何题的概率;(2)在第1次抽到代数题的条件下,第2次抽到几何题的概率.分析:如果把“第1次抽到代数题”和“第2次抽到几何题”作为两个事件,那么问题(1)就是积事件的概率,问题(2)就是条件概率.可以先求积事件的概率,再用条件概率公式求条件概率;也可以先求条件概率,再用乘法公式求积事件的概率.解法1:设A=“第1次抽到代数题”,B=“第2次抽到几何题”。(1)“第1次抽到代数题且第2次抽到几何题”就是事件AB.从5道试题中每次不放回地随机抽取2道,试验的样本空间包含20个等可能的样本点,即n=A52=54=20。因为n(AB)= A31A21=32=6P(AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高中数学精品教案 【2022高中数学精品教案】7.1.1 条件概率 教学设计 2022 高中数学 精品 教案 7.1 条件 概率 教学 设计
限制150内