初等数学研究答案(46页).doc
《初等数学研究答案(46页).doc》由会员分享,可在线阅读,更多相关《初等数学研究答案(46页).doc(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-初等数学研究答案-第 46 页初等数学研究,李长明,周焕山版 高等教育出版社习题一1答:原则:(1)AB (2)A的元素间所定义的一些运算或基本关系,在B中被重新定义。而且对于A 的元素来说,重新定义的运算和关系与A中原来的意义完全一致。 (3)在A中不是总能施行的某种运算,在B中总能施行。 (4) 在同构的意义下,B应当是A满足上述三原则的最小扩展,而且由A唯一确定。 方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c组成集合M。a=b, 假设,则 由归纳公理知M=N,所以命题对任意自然数c成立。 (2)若ab,则 则acb,则 则acbc。3证明:(1)用反证法:若。
2、当ab时,由乘法单调性知acbc. 当ab时,由乘法单调性知acbc.这与ac=bc矛盾。则a=b。 (2)用反证法:若。当ab时,由乘法单调性知acbc. 当a=b时,由乘法单调性知ac=bc.这与acbc矛盾。则ab。 (3)用反证法:若。当ab时,由乘法单调性知acbc矛盾。则ab。4. 解:(1) (2) 5证明:当n=1时, 假设当n=k时则当n=k+1时 则对,是9的倍数.6证明:当时,=,=;则当时成立。假设当时成立,即()()() ()=当时,()()() ()()当时成立。7解:(1) (2) (3)当n=1时, 假设当n=k时则当n=k+1时 则对,是10的倍数.8证明:9
3、证明:假设存在b,使得由若若 因此10证明:则=11答:(1)加法,乘法,减法; 构成数环 (2)乘法,除法; (3)加法,乘法; (4)加法,乘法; (5)加法,乘法,除法; (6)乘法; (7)加法,乘法,减法;构成数环 (8)加法,乘法,减法;构成数环12 证明:方法一 即 即方法二:设则由p=q得, 则1,则任何小于1的数都是的下界.11 证明: 由于是有界函数,则而没有上界,则对则对,则与的和在定义域上无上界.12 解: 则 13. (1)奇函数 (2)偶函数 (3)非奇非偶函数 (4)非奇非偶函数 (5)偶函数 (6)偶函数14解: 则是偶函数.15解: 则16解:(1) 则的定义
4、域为,它是奇函数.(2)由 则 (3) (4) 对17解:当时,即又是奇函数,则则18解:=0 则19解:(1) 即。要比较2x,3y和6z的大小,只须比较的大小即可。而,即(2) 20解:由于当=0;当=-=-0;综上可知.21解:令,则在-1,1上单调递增.而则22 解: 由于则则则,故23证明: 则是周期。假设最小正周期是,且则即令,即.则这与不成立,即证.24证明:假设是以为周期的周期函数. 即则令则令当令当矛盾。则不是周期函数。25解:(1)由得, 则(2)26. (1)=(2)27解:习题四1解:(1) 2解:方程和在有理数集,实数集上同解,在复数集上不同解。3(1)不同解。定义域
5、不相同. (2)不同解。定义域不相同. (3)同解(4)不同解(5)同解(6)同解(7)不同解。定义域不相同(8)同解(9)同解(10)不同解。定义域不相同4解:(1)方程两边同乘以得, 即或但或为增根,故原方程无解。(2)解:方程两边同乘以得, 即或但为增根,故原方程解为。(3)解:方程两边同乘以得, 即或但为增根,故原方程解为。(4)解:方程两边同乘以得, 即或故原方程解为或(5)解:令则方程两边同乘以得即 即或,故原方程解为或.(6)解:设则即则 当时得当时得或 即原方程的解为或5解:(1)方程两边同乘以得, 即或则(舍),即原方程的解为 (2)利用合分比性质得,即 即或则即原方程的解为
6、 (2)解:方程两边同乘以得: 即 则+ 即 当时;当时也满足。 即原方程的解为(3) 解:原方程变为 整理得,即运用差根变换,各根减去,可得缺二次项的三次方程一次项常数项 (1) (2)且 (3) 设是(1)的任意一个解,则的另外两个解为其中是1的三次单位根由(3)得到与相对应的的三个解:因此的三个根是因此的三个根是则原方程的根为 (4) 解:原方程变为得: 整理得即原方程的解为6 解(1) 原方程变为得两边平方得即即原方程的解为(2) 解:两边平方得:,则无解.(3) 解:先分子有理化当时: 再平方整理得: 利用待定系数法得令即即.当时也是解,则原方程的解为;.(4)解: 原方程变为 即,
7、即7解:(1) =得或 (2) =得(3) 得或(4) 得或8解:令则 即9解: 令,则先求以为根的方程为. 再求以为根的方程为 即 10解:由得和求以和为根的方程为.11解:由得 则先求以为根的方程为.再求以和为根的方程为12 解:若整除则即或13(1)解: 一次项常数项 (1) (2)且 (3) 设是(1)的任意一个解,则的另外两个解为其中是1的三次单位根由(3)得到与相对应的的三个解: 因此的三个根是 其中(2)解: 运用差根变换,各根减去1,可得缺二次项的三次方程一次项常数项 (1) (2)且 (3) 设是(1)的任意一个解,则的另外两个解为其中是1的三次单位根由(3)得到与相对应的的
8、三个解:因此的三个根是 其中(3) 解: 则或(4) 解:则或14解(1)方程两边同除以, 令则;即当时,当时,或则方程的解为或(2) 解:方程两边同除以, 令则;即解得: 或当时, 当时,则方程的解为 (3) 解:显然是一个根,再求的根,方程两边同除以, 令则;即当时,当时,或则方程的解为,或(4) 解:方程两边同除以, 令则;即当时,当时,则方程的解为(5) 解: 方程两边同除以, 令则;即解得: 或当时, 当时,则方程的解为(6) 解:显然是一个根,再求的根,方程两边同除以, 令则;即则当时,当时,;当时,则方程的解为,15由题意得即16(1)解: 则,(2)解: 则,(3) 解:令则即
9、;则或.即则, 即则, .(4)解:令则即当时,即则当时,即则当时,即则或当时,即则或则方程的解为;17 证明:是方程的一个根, 而则方程的另外两个根是和18(1) 解:方程两端同乘以 得, 则当时,有;当时,有 (2) 解: 当时:1)若时,。2)当时3)若时,方程两端同乘以得: 当时或 即.(3) 解:当时:1)若时,。2)若时, 当时:1)若时,2)若时, 设代入方程得 ,整理得; 即或 当时代入得即当时, 当时或当时代入得当时,当时,(4) 解: 当时,无解;当时,整理得:; 当时, . 当时,无解。(5)解:由方程本身可得两端同除以得:,令得:则(舍);当时则当无解;当19解:(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初等 数学 研究 答案 46
限制150内