电磁场与电磁波基础第5章.ppt
《电磁场与电磁波基础第5章.ppt》由会员分享,可在线阅读,更多相关《电磁场与电磁波基础第5章.ppt(73页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第5 5章章 静态场的解静态场的解 静态场是指场量不随时间变化的场。静态场包括:静电静态场是指场量不随时间变化的场。静态场包括:静电场、恒定电场及恒定磁场,它们是时变电磁场的特例。分析场、恒定电场及恒定磁场,它们是时变电磁场的特例。分析静态场,必须从麦克斯韦方程组这个电磁场的普遍规律出发,静态场,必须从麦克斯韦方程组这个电磁场的普遍规律出发,导出静态场中的麦克斯韦方程组,即描述静态场特性的基本导出静态场中的麦克斯韦方程组,即描述静态场特性的基本方程。再根据它们的特性,联合物态方程推导出位函数的泊方程。再根据它们的特性,联合物态方程推导出位函数的泊松方程和拉普拉斯方程。最后,静态场问题可归结为
2、求泊松松方程和拉普拉斯方程。最后,静态场问题可归结为求泊松方程和拉普拉斯方程解的问题。通常求解这两个方程的方法方程和拉普拉斯方程解的问题。通常求解这两个方程的方法有:镜像法、分离变量法和复变函数法,它们属于解析法,有:镜像法、分离变量法和复变函数法,它们属于解析法,而在近似计算中常用有限差分法。而在近似计算中常用有限差分法。1.1.静电场静电场、恒定电场恒定电场 、恒定磁场的基本方程恒定磁场的基本方程 4.4.镜像法镜像法 、分离变量法、分离变量法 、格林函数法、格林函数法 、有限差分法有限差分法 重点重点:3.3.求解静态场位函数方程的方法所依据的理论:求解静态场位函数方程的方法所依据的理论
3、:对偶原理、叠加原理、唯一性定理对偶原理、叠加原理、唯一性定理 2.2.静态场的位函数方程静态场的位函数方程 5.1 5.1 泊松方程和拉普拉斯方程泊松方程和拉普拉斯方程 5.1.1 5.1.1 静态场中的麦克斯韦方程组静态场中的麦克斯韦方程组 对于静态场,各场量只是空间坐标的函数,并不随时对于静态场,各场量只是空间坐标的函数,并不随时间而变化,即与时间间而变化,即与时间t t无关。因此无关。因此 ,静态场的麦克斯韦方,静态场的麦克斯韦方程组为:程组为:电流连续性方程为:电流连续性方程为:由上述方程组可知,静态场与时变场最基本的区别在于静由上述方程组可知,静态场与时变场最基本的区别在于静态场的
4、电场和磁场是彼此独立存在的,即电场只由电荷产态场的电场和磁场是彼此独立存在的,即电场只由电荷产生,磁场只由电流产生。没有变化的磁场,也没有变化的生,磁场只由电流产生。没有变化的磁场,也没有变化的电场。既然如此,我们就可以分别写出静电场、恒定电场电场。既然如此,我们就可以分别写出静电场、恒定电场和恒定磁场的基本方程。和恒定磁场的基本方程。1 1、静电场的基本方程静电场的基本方程 静电场是静止电荷或静止带电体产生的场,其基本方静电场是静止电荷或静止带电体产生的场,其基本方程为程为 上式表明:静电场中的旋度为上式表明:静电场中的旋度为0 0,即静电场中的电场不可,即静电场中的电场不可能由旋涡源产生;
5、电荷是产生电场的通量源。能由旋涡源产生;电荷是产生电场的通量源。另外:电介质的物态方程为另外:电介质的物态方程为 静电场是一个有源无旋场,所以静电场可用电位函数来描述,静电场是一个有源无旋场,所以静电场可用电位函数来描述,即即 2 2、恒定电场的基本方程、恒定电场的基本方程 载有恒定电流的导体内部及其周围介质中产生的电场,载有恒定电流的导体内部及其周围介质中产生的电场,即为恒定电场。当导体中有电流时,由于导体电阻的存在,即为恒定电场。当导体中有电流时,由于导体电阻的存在,要在导体中维持恒定电流,必须依靠外部电源提供能量,要在导体中维持恒定电流,必须依靠外部电源提供能量,其电源内部的电场也是恒定
6、的。其电源内部的电场也是恒定的。要想在导线中维持恒定电流,必须依靠非静电力将要想在导线中维持恒定电流,必须依靠非静电力将B B极极板的正电荷抵抗电场力搬到板的正电荷抵抗电场力搬到A A极板。这种提供非静电力将其极板。这种提供非静电力将其它形式的能量转为电能装置称为电源。它形式的能量转为电能装置称为电源。恒定电流的形成恒定电流的形成+ABC-恒定电场与静电场重要区别:恒定电场与静电场重要区别:(1 1)恒定电场可以存在导体内部。)恒定电场可以存在导体内部。(2 2)恒定电场中有电场能量的损耗)恒定电场中有电场能量的损耗,要维持导体中的恒定电要维持导体中的恒定电流,就必须有外加电源来不断补充被损耗
7、的电场能量。流,就必须有外加电源来不断补充被损耗的电场能量。若一闭合路径经过电源,则:若一闭合路径经过电源,则:即电场强度即电场强度 的线积分等于电源的电动势的线积分等于电源的电动势 若闭合路径不经过电源,则:若闭合路径不经过电源,则:这是恒定电场在无源区的基本方程积分形式,其微分形式为这是恒定电场在无源区的基本方程积分形式,其微分形式为 从以上分析可知,恒定电场的无源区域也是一个位场,也从以上分析可知,恒定电场的无源区域也是一个位场,也可用一个标量函数来描述。可用一个标量函数来描述。另外:另外:导体中的物态方程为导体中的物态方程为 3 3、恒定磁场的基本方程、恒定磁场的基本方程 这是恒定磁场
8、的基本方程。这是恒定磁场的基本方程。从以上方程可知,恒定磁场是一个旋涡场,电流是这个旋从以上方程可知,恒定磁场是一个旋涡场,电流是这个旋涡场的源,磁力线是闭合的。涡场的源,磁力线是闭合的。另外:另外:磁介质中的物态方程为磁介质中的物态方程为 恒定电流的导体周围或内部不仅存在电场,而且存在恒定电流的导体周围或内部不仅存在电场,而且存在磁场,但这个磁场不随时间变化,是恒定磁场。假设导体磁场,但这个磁场不随时间变化,是恒定磁场。假设导体中的传导电流为中的传导电流为I I,电流密度为,电流密度为 ,则有则有 静电场既然是一个位场,就可以用一个标量函数静电场既然是一个位场,就可以用一个标量函数 的梯度来
9、表示它的梯度来表示它:5.1.2 5.1.2 泊松方程和拉普拉斯方程泊松方程和拉普拉斯方程 1 1、静电场的位函数、静电场的位函数 即即式中的标量函数式中的标量函数 称为称为电位函数。电位函数。所以有所以有对于均匀、线性、各向同性的介质,对于均匀、线性、各向同性的介质,为常数为常数,即即静电场静电场的位函数的位函数 满足的满足的泊松方程。泊松方程。上式即为在有电荷分布的区域内,或者说在有上式即为在有电荷分布的区域内,或者说在有“源源”的区的区域内,静电场的电位函数域内,静电场的电位函数所满足的方程,我们将这种形式所满足的方程,我们将这种形式的方程称为的方程称为 泊松方程。泊松方程。如果场中某处
10、有如果场中某处有=0=0,即在无源区域,则上式变为,即在无源区域,则上式变为我们将这种形式的方程称为我们将这种形式的方程称为 拉普拉斯方程。它拉普拉斯方程。它是在不存在电荷的区域内,电位函数是在不存在电荷的区域内,电位函数 应满足的方程。应满足的方程。在直角坐标系中在直角坐标系中 在圆柱坐标系中在圆柱坐标系中 在球坐标系中在球坐标系中 拉普拉斯算符拉普拉斯算符 在不同的坐标系中有不同的表达形式:在不同的坐标系中有不同的表达形式:2 2、恒定电场的位函数、恒定电场的位函数 根据电流连续性方程根据电流连续性方程 及物态方程及物态方程 并设电导率并设电导率 为一常数(对应于均匀导电媒质),则有为一常
11、数(对应于均匀导电媒质),则有 则有则有在无源区域,在无源区域,恒定电场是一个位场,即有恒定电场是一个位场,即有 这时同样可以引入一个标量位函数这时同样可以引入一个标量位函数 使得使得 这说明,在无源区域,恒定电场的位函数满足拉普拉斯这说明,在无源区域,恒定电场的位函数满足拉普拉斯方程。方程。3 3、恒定磁场的位函数分布、恒定磁场的位函数分布 人为规定人为规定 (1)磁场的矢量位函磁场的矢量位函数数这个规定被称为库仑规范这个规定被称为库仑规范 于是有于是有此式即为矢量磁位的泊松方程。此式即为矢量磁位的泊松方程。恒定磁场是有旋场,即恒定磁场是有旋场,即 ,但它却是无散场,但它却是无散场,即即 引
12、入一个矢量磁位引入一个矢量磁位 后,由于后,由于 ,可得,可得 在没有电流的区域在没有电流的区域 ,所以有所以有 在没有电流分布的区域内,恒定磁场的基本方程变为在没有电流分布的区域内,恒定磁场的基本方程变为 (2)磁场的标量位函磁场的标量位函数数这样,在无源区域内,磁场也成了无旋场,具有位场的性这样,在无源区域内,磁场也成了无旋场,具有位场的性质,因此,象静电场一样,我们可以引入一个标量函数,质,因此,象静电场一样,我们可以引入一个标量函数,即标量磁位函数即标量磁位函数 注意:标量磁位的定义只是在无源区才能应用。注意:标量磁位的定义只是在无源区才能应用。即令即令 此式即为矢量磁位此式即为矢量磁
13、位的拉普拉斯方程的拉普拉斯方程以上所导出的三个静态场的基本方程表明:静态场可以用以上所导出的三个静态场的基本方程表明:静态场可以用位函数表示,而且位函数在有源区域均满足泊松方程,在位函数表示,而且位函数在有源区域均满足泊松方程,在无源区域均满足拉普拉斯方程。因此,静态场的求解问题无源区域均满足拉普拉斯方程。因此,静态场的求解问题就变成了如何求解泊松方程和拉普拉斯方程的问题。这两就变成了如何求解泊松方程和拉普拉斯方程的问题。这两个方程是二阶偏微分方程,针对具体的电磁问题,不可能个方程是二阶偏微分方程,针对具体的电磁问题,不可能完全用数学方法求解。在介绍具体的求解方法之前,我们完全用数学方法求解。
14、在介绍具体的求解方法之前,我们要先介绍几个重要的基本原理,这些原理将成为以后求解要先介绍几个重要的基本原理,这些原理将成为以后求解方程的理论依据。方程的理论依据。当媒质是均匀、线性和各项同性时,由当媒质是均匀、线性和各项同性时,由 和和 可得可得 由于由于 5.2 5.2 对偶原理对偶原理 如果描述两种物理现象的方程具有相同的数学形式,如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。具有同样数学解的形式也将是相同的,这就是对偶原理。具有同样数学形式的两个方程
15、称为对偶性方程,在对偶性方程中,处学形式的两个方程称为对偶性方程,在对偶性方程中,处于同等地位的量称为对偶量。于同等地位的量称为对偶量。有了对偶原理后,我们就能把某种场的分析计算结果,有了对偶原理后,我们就能把某种场的分析计算结果,直接推广到其对偶的场中,这也是求解电磁场的一种方法。直接推广到其对偶的场中,这也是求解电磁场的一种方法。1 1、=0=0区域的静电场与电源外区域的恒定电场的对偶区域的静电场与电源外区域的恒定电场的对偶 对偶量对偶量恒定电场恒定电场静电场静电场 对偶量对偶量恒定磁场恒定磁场静电场静电场2 2、=0=0区域的静电场与区域的静电场与 区域的恒定磁场的对偶区域的恒定磁场的对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 电磁波 基础
限制150内