分类变量与列联表ppt课件.pptx
《分类变量与列联表ppt课件.pptx》由会员分享,可在线阅读,更多相关《分类变量与列联表ppt课件.pptx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么8.3列联表与独立性检验8.3.1分类变量与列联表讲课人:邢启强2在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么回顾旧知回顾旧知2.残差平方和:3.最小二乘法将 称为Y 关于x 的经验回归方程经验回归方程,4.判断模型拟合的效果:残差分析R2越大,表示残差平方和越小,即模型的拟合效果越好R2越小,表示残差平方和越大,即模型拟合效果越差.1.线性回归模型ybxae含有随机误差e,其中x为解释变量,y响应变量讲课人:邢启强3在日常生活中,
2、随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性
3、质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于0,1的分类变量的关联性问题.新课引入新课引入讲课人:邢启强4在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么如何利用统计数据判断一对分类变量之间是否具有关联性呢?对于这样的统计问题,有时可以利用普查数据,通过比较相关的比率给出问题的准确回答,但在大多数情况下,需要借助概率的观点和方法,我们先看下面的具体问题。问题1.
4、为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对本校学生体育锻炼的经常性有影响,为此对学生是否经常锻炼的情况进行了普查,全校学生的普查数据如下:523名女生中有331名经常锻炼;601名男生中有473名经常锻炼。你能利用这些数据,说明该校女生和男生在体育锻炼的经常性方面是否存在差异吗?新课引入新课引入讲课人:邢启强5在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么新课引入新课引入我们希望通过比较条件概率P(Y=1|X=0)和P(Y=1|X=1)回答上面的问题.按照条件本概率的直观解释,如果从该校女生和男生中各随机选取一
5、名学生,那么该女生属于经常锻炼群体的概率是P(Y=1|X=0),而该男生属于经常锻炼群体的概率是P(Y=1|X=1).“性别对体育锻炼的经常性没有影响”可以描述为P(Y=1|X=0)=P(Y=1|X=1);“性别对体育锻炼的经常性有影响”可以描述为P(Y=1|X=0)P(Y=1|X=1).为了清楚起见,我们用表格整理数据讲课人:邢启强6在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么学习新知学习新知我们用X=0,Y=1表示事件X=0和Y=1的积事件,用X=1,Y=1表示事件X=1和Y=1的积事件,根据古典概型和条件概率的计算公式,我们有由
6、P(Y=1|X=1)P(Y=1|X=0)可以作出判断,在该校的学生中,性别对体育锻炼的经常性有影响,即该校的女生和男生在体育锻炼的经常性方面存在差异,而且男生更经常锻炼。讲课人:邢启强7在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在实践中,由于保存原始数据的成本较高,人们经常按研究问题的需要,将数据分类统计,并做成表格加以保存,我们将下表这种形式的数据统计表称为22列联表(contingencytable).22列联表给出了成对分类变量数据的交叉分类频数,以右表为例,它包含了X和Y的如下信息:最后一行的前两个数分别是事件Y=0和Y=1
7、中样本点的个数;最后一列的前两个数分别是事件X=0和X=1中样本点的个数;中间的四个格中的数是表格的核心部分,给出了事件X=x,Y=y(x,y=0,1)中样本点的个数;右下角格中的数是样本空间中样本点的总数。在上面问题的两种解答中,使用了学校全部学生的调查数据,利用这些数据能够完全确定解答问题所需的比率和条件概率.然而,对于大多数实际问题,我们无法获得所关心的全部对象的数据,因此无法准确计算出有关的比率或条件概率.在这种情况下,上述古典概型和条件概率的观点为我们提供了一个解决问题的思路.比较简单的做法是利用随机抽样获得一定数量的样本数据,再利用随机事件发生的频率稳定于概率的原理对问题答案作出推
8、断。讲课人:邢启强8在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么例1为比较甲、乙两所学校学生的数学水平,采用简单随机抽样的方法抽取88名学生.通过测验得到了如下数据:甲校43名学生中有10名数学成绩优秀;乙校45名学生中有7名数学成绩优秀,试分析两校学生中数学成绩优秀率之间是否存在差异.典型例题典型例题学校学校数学成绩数学成绩合计合计不优秀(Y=0)优秀(Y=1)甲校(X=0)乙校(X=1)合计左表是关于分类变量X和Y的抽样数据的22列联表:最后一行的前两个数分别是事件(Y=0)和(Y=1)的频数;最后一列的前两个数分别是事件(X=0
9、)和(X=1)的频数;中间的四个格中的数是事件(X=x,Y=y)(x,y=0,1)的频数;33104338745711788讲课人:邢启强9在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么我们可以用等高堆积条形图直观地展示上述计算结果,如下图所示左边的蓝色和红色条的高度分别是甲校学生中数学成绩不优秀和数学成绩优秀的频率;右边的蓝色和红色条的高度分别是乙校学生中数学成绩不优秀和数学成绩优秀的频率,通过比较发现,两个学校学生抽样数据中数学成绩优秀的频率存在差异,甲校的频率明显高于乙校的频率,依据频率稳定于概率的原理,我们可以推断P(Y=1|X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分类 变量 列联表 ppt 课件
限制150内