计算方法-第六章复习ppt课件.pptx
《计算方法-第六章复习ppt课件.pptx》由会员分享,可在线阅读,更多相关《计算方法-第六章复习ppt课件.pptx(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章 线性方程组的数值求解6.1 高斯顺序消去法6.2 高斯列主元消去法6.5 追赶法6.6 向量与矩阵的范数6.7 误差分析6.8 迭代法引言引言高斯顺序消高斯顺序消去法的条件去法的条件6.2 高高斯列主斯列主元素消去法元素消去法列主元消去法列主元消去法在四位浮点十进制数的计算机上在四位浮点十进制数的计算机上,结果为结果为 x1=0 x2=1例例5 用用高斯顺序消元法解高斯顺序消元法解线性方程组,并线性方程组,并假设假设求解是求解是在四位浮点十进制数的计算机上进行在四位浮点十进制数的计算机上进行0.0001x1+x2=1 x1+x2=29999 x2=99980.0001x1+x2=1解:
2、解:消消元,得元,得这与实际结果相差甚远。这与实际结果相差甚远。假设求解是在四假设求解是在四位浮点十进制数位浮点十进制数的计算机上进行的计算机上进行0.0001x1+x2=1 x1+x2=2将两个方程对调,得将两个方程对调,得 x1+x2=2 0.0001x1+x2=1在四位浮点十进制数的计算机上在四位浮点十进制数的计算机上,上式为上式为 x1+x2=2 即即 x1+x2=2 (0.1000101-0.00001 101)x2=1 x2=1(1-0.0001)x2=1x1+x2=2消元,得消元,得解得:解得:x1=1,x2=1现在我们再用列主元法解现在我们再用列主元法解例例36.6 向量和矩阵
3、的范数向量和矩阵的范数定义定义(向量范数向量范数)x 和和 y 是是 Rn 中的任意向量中的任意向量,向量范数向量范数是定义在是定义在 Rn上的实值函数上的实值函数,它满足它满足:(1)x 0,并且当且仅当并且当且仅当 x=0 时时,x=0;(2)k x=|k|x,k 是一个实数是一个实数;(3)x+y x+y 常使用的向量范数有三种常使用的向量范数有三种,设设 x=(x1,x2,xn)T 常使用的矩阵范数有三种常使用的矩阵范数有三种,设设 x=(x1,x2,xn)T 迭代法适用于求解大型稀疏的线性方程组,其迭代法适用于求解大型稀疏的线性方程组,其基本思想是通过构造迭代格式产生迭代序列,由迭代
4、基本思想是通过构造迭代格式产生迭代序列,由迭代序列来逼近原方程组的解,因此,要解决的基本问题序列来逼近原方程组的解,因此,要解决的基本问题是:是:1.如何构造迭代格式如何构造迭代格式 2.迭代序列是否收敛迭代序列是否收敛一一一一 .基本迭代法的格式及收敛性基本迭代法的格式及收敛性基本迭代法的格式及收敛性基本迭代法的格式及收敛性二二二二 .几种实用的基本迭代法几种实用的基本迭代法几种实用的基本迭代法几种实用的基本迭代法三三三三 .应用实例应用实例应用实例应用实例6.8 迭代法迭代法一一 .基本迭代法的格式及收敛性基本迭代法的格式及收敛性 设有线性代数方程组设有线性代数方程组 a11x1+a12x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算方法 第六 复习 ppt 课件
限制150内