初中语文 文摘(历史)世界名画中的数学(共2页DOC).doc
《初中语文 文摘(历史)世界名画中的数学(共2页DOC).doc》由会员分享,可在线阅读,更多相关《初中语文 文摘(历史)世界名画中的数学(共2页DOC).doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、最新资料推荐世界名画中的数学大名鼎鼎的杨振宁出书,封面不是金光闪闪的诺贝尔奖章,也不是他与爱因斯坦的合影,而是一张看上去让人眼晕的画作。在这本名为基本粒子发现简史的封面上。黑色骑马人排成一排,由左向右,而在空隙所镶嵌的背景里。又有一排白色骑马人,从右向左。黑与白相反相成。1957年。杨振宁和李政道因发现在基本粒子的弱相互作用中的宇称不守恒定律,获得当年的诺贝尔物理学奖。在物理学中对于基本粒子的对称性在不同的能,量境界有“对称”或者“破缺”的论述,这幅名叫骑士的画作,与这种对称性的结构对应论相吻合。作者是自称“图形艺术家”的埃舍尔。“他是一个将艺术与科学融合的画家。”杨振宁评价说。在同济大学数学
2、教授梁进的眼里,荷兰人埃舍尔是将绘画与数学结合最完美的艺术家之一。他创作的版画被许多科学著作和杂志用作封面,1954年的“国际数学协会”甚至在阿姆斯特丹专门为他举办了个人画展。埃舍尔打破了数学与艺术之间的藩篱这也是梁进试图要做的事情。不同于画家将科学与艺术糅在作品里。梁进是要寻找“艺术背后数学的影子”。在系列博文世界名画中的数学中,梁进向读者展示世界名画中的数学。当人们沉浸于蒙娜丽莎神秘的微笑时,梁进指出其中的三角结构;当观众试图解析最后的晚餐中人物心理状态时,梁进发现其中利用两边的矩形通过梯度实现透视的效果;当世人惊叹于塞尚静物写生的轮廓之妙时。梁进看到了稳态平衡和不稳态平衡的相互转换。在她
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中语文 文摘历史世界名画中的数学共2页DOC 文摘 历史 世界 名画 中的 数学 DOC
限制150内