六年级数学下册 5《数学广角——鸽巢问题》教案 新人教版(共6页DOC).doc
《六年级数学下册 5《数学广角——鸽巢问题》教案 新人教版(共6页DOC).doc》由会员分享,可在线阅读,更多相关《六年级数学下册 5《数学广角——鸽巢问题》教案 新人教版(共6页DOC).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、最新资料推荐数学广角鸽巢问题教学内容(1)概念原理:抽屉原理,枚举法,假设法;(2)思想方法:观察、比较、判断,归纳;(3)能力素养:研究问题和解决问题的能力。内容解析本课是数学广角鸽巢问题这一单元的唯一一课,学生已经学习过找规律、植树问题、找次品、鸡兔同笼等数学广角等知识的基础上进行的,这为学习鸽巢问题的内容奠定了良好的基础。教学目标(1)理解鸽巢原理的基本形式,初步学习鸽巢原理的分析方法,能初步运用鸽巢原理解决简单的实际问题或解释相关的现象。(2)学生通过操作、观察、比较、推理等活动探究鸽巢原理的过程中,逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养模型思想和逻辑推理思想。(3)
2、学生通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高解决问题的能力和兴趣。目标解析(1)通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。(2)鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。(3)通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。教学重难点【教学重点】 经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。【教学难点】能熟练解答比例尺的有关问题。教学过程游戏引入 【问题1】(1)“至少”表示什么意思?(2)老师
3、的判断为什么这么准确呢?设计意图:魔术表演是学生喜欢的,创设魔术表演的情境,抓住学生的好奇心理,激发学生的求知欲望,唤起学生的主体意识,为学生自主探索、发现问题、解决问题营造氛围。预设师生活动:(1)小组内交流讨论。(2)全班汇报交流。探究新知出示教材例1 【问题2】(1)通过刚才的摆放,你发现了什么?(2)“总有”和“至少”是什么意思?(3)什么是枚举法?(4)还有其他方法得出这个结论吗?设计意图:让学生通过枚举、假设等方法把抽象的数学知识同具体的分析策略结合起来,经历知识发生、发展的过程,体验策略的多样化。预设师生活动:(1)学生在小组内摆一摆,画一画。以小组为单位交流汇报。教师引导学生总
4、结。预设:第(1)问:不管怎么放,总有一个笔筒里至少有2支铅笔。第(2)问:“总有”是肯定有,一定有的意思;“至少”是最少的意思。第(3)问:列举出所有分法之后得出结论,我们把这种方法称为“枚举法”。第(4)问:假设法.。小结:把 m 个物体任意放进 n 个抽屉中,(m n ,m 和 n 是非0自然数),若m n = 1 a,那么一定有一个抽屉中至少放进了 2 个物体。出示教材例2【问题3】(1)能用算式帮助你分析并表达自己的想法吗? (2)如果有8本书会怎样?10本书呢?(3)你能发现什么? 设计意图:在这个环节里抓住假设法的核心思路,用有余数除法的形式表示,让学生直观地理解如果把书尽量多的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学广角鸽巢问题 六年级数学下册 5数学广角鸽巢问题教案 新人教版共6页DOC 六年级 数学 下册 广角 问题 教案 新人 DOC
限制150内