1.2 简易逻辑及充要条件.ppt
《1.2 简易逻辑及充要条件.ppt》由会员分享,可在线阅读,更多相关《1.2 简易逻辑及充要条件.ppt(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、要点梳理要点梳理1.1.简单的逻辑联结词简单的逻辑联结词 (1 1)命题中的)命题中的“_”、“_”、“_”叫做逻辑叫做逻辑 联结词联结词.1.2 1.2 简易逻辑及充要条件简易逻辑及充要条件基础知识基础知识 自主学习自主学习或或且且非非(2 2)用来判断复合命题的真假的真值表:)用来判断复合命题的真假的真值表:p pq q真真真真假假假假_真真_假假_假假真真假假假假真真_真真假假假假真真真真假假_假假_真真_假假假假假假真真真真假假_真真_真真_真真真真假假真真假假真真真真假假假假真真真真假假假假2.2.四种命题及其关系四种命题及其关系(1 1)四种命题)四种命题命题命题表述形式表述形式原
2、命题原命题若若p p,则,则q q逆命题逆命题_否命题否命题_逆否命题逆否命题_若若q q,则则p p(2 2)四种命题间的逆否关系)四种命题间的逆否关系 (3)(3)四种命题的真假关系四种命题的真假关系 两个命题互为逆否命题,它们有两个命题互为逆否命题,它们有_的真假性的真假性;两个命题互为逆命题或互为否命题,它们的真假两个命题互为逆命题或互为否命题,它们的真假 性性_._.3.3.充分条件与必要条件充分条件与必要条件 (1)(1)如果如果p p q q,则则p p是是q q的的_,_,q q是是p p的的_;_;(2)(2)如果如果p pq q,q qp p,则则p p是是q q的的_._
3、.相同相同没有关系没有关系充分条件充分条件必要条件必要条件充要条件充要条件基础自测基础自测1.1.下列语句是命题的是下列语句是命题的是 ()求证求证 是无理数;是无理数;x x2 2+4+4x x+40+40;你是高一的学生吗?你是高一的学生吗?一个正数不是素数就是合数;一个正数不是素数就是合数;若若x xR R,则,则x x2 2+4+4x x+70.+70.A.B.C.D.A.B.C.D.解析解析 不是命题,不是命题,是祈使句,是祈使句,是疑问句是疑问句.而而 是命题,其中是命题,其中是假命题,如正数是假命题,如正数 既不是既不是 素数也不是合数,素数也不是合数,是真命题,是真命题,x x
4、2 2+4+4x x+4=(+4=(x x+2)+2)2 200恒成立,恒成立,x x2 2+4+4x x+7=(+7=(x x+2)+2)2 2+30+30恒成立恒成立.答案答案 C 2.2.命题命题“若若x x2 2 y y2 2,则,则x x y y”的逆否命题是的逆否命题是 ()A.A.“若若x x y y,则,则x x2 2 y y,则则x x2 2 y y2 2”C.C.“若若x xy y,则,则x x2 2y y2 2”D.D.“若若x xy y,则则x x2 2y y2 2”C3.3.(2009(2009江西文江西文,1),1)下列命题是真命题的为(下列命题是真命题的为()A.
5、A.B.B.若若x x2 2=1,=1,则则x x=1=1 C.C.若若x x=y y,则则 D.D.若若x x y y,则则x x2 2 d d,则则 “a a b b”是是“a a-c c b b-d d”的的 ()A.A.充分而不必要条件充分而不必要条件 B.B.必要而不充分条件必要而不充分条件 C.C.充要条件充要条件 D.D.既不充分也不必要条件既不充分也不必要条件 解析解析 c c d d,-,-c c-b b,a a-c c与与b b-d d的大小无法比较;的大小无法比较;当当a a-c c b b-d d成立时,假设成立时,假设a ab b,-,-c c-d d,a a-c c
6、 b b.综上可知,综上可知,“a a b b”是是“a a-c c b b-d d”的必要不充分的必要不充分 条件条件.B题型一题型一 命题的关系及命题真假的判断命题的关系及命题真假的判断【例例1 1】分别写出下列命题的逆命题、否命题、逆否分别写出下列命题的逆命题、否命题、逆否 命题,并判断它们的真假命题,并判断它们的真假.(1 1)面积相等的两个三角形是全等三角形)面积相等的两个三角形是全等三角形.(2 2)若)若q q1,1,则方程则方程x x2 2+2+2x x+q q=0=0有实根有实根.(3 3)若)若x x2 2+y y2 2=0=0,则实数,则实数x x、y y全为零全为零.题
7、型分类题型分类 深度剖析深度剖析写成写成“若若p p,则,则q q”的形式的形式写出逆命题、否命题、逆否命题写出逆命题、否命题、逆否命题判断真假判断真假思维启迪思维启迪解解 (1 1)逆命题:全等三角形的面积相等)逆命题:全等三角形的面积相等,真命题真命题.否命题:面积不相等的两个三角形不是全等三角形,否命题:面积不相等的两个三角形不是全等三角形,真命题真命题.逆否命题:两个不全等的三角形的面积不相等,假命逆否命题:两个不全等的三角形的面积不相等,假命题题.(2)(2)逆命题:若方程逆命题:若方程x x2 2+2+2x x+q q=0=0有实根有实根,则则q q1,b b+d d,q q:a
8、a b b且且c c d d B.B.p p:a a1,1,b b1,1,q q:f f(x x)=)=a ax x-b b(a a0,0,且且a a1)1)的图象不过的图象不过 第二象限第二象限 C.C.p p:x x=1=1,q q:x x2 2=x x D.D.p p:a a1,1,q q:f f(x x)=)=logloga ax x(a a0,0,且且a a1)1)在(在(0,+0,+)上)上 为增函数为增函数 解析解析 a a b b,c c d d a a+c c b b+d d,而,而a a+c c b b+d d却不一定却不一定 推出推出a a b b,c c d d.故故A
9、 A中中p p是是q q的必要不充分条件的必要不充分条件.B.B中中,当当a a1,1,b b11时,函数时,函数f f(x x)=)=a ax x-b b不过第二象限不过第二象限,当当f f(x x)=)=a ax x-b b不过第二象限时,有不过第二象限时,有a a1,1,b b1.1.故故B B中中p p是是q q的充分不的充分不必要条件必要条件.C.C中,因为中,因为x x=1=1时有时有x x2 2=x x,但,但x x2 2=x x时不一定有时不一定有x x=1=1,故,故C C中中p p是是q q的充分不必要条件的充分不必要条件.D.D中中p p是是q q的充要条的充要条件件.答
10、案答案 A题型三题型三 用用“或或”、“且且”、“非非”联结简单命联结简单命 题并判断其真假题并判断其真假【例例3 3】写出由下列各组命题构成的写出由下列各组命题构成的“p p或或q q”“p p且且q q”、“p p”形式的复合命题,并判断形式的复合命题,并判断 真假真假.(1 1)p p:1:1是质数;是质数;q q:1 1是方程是方程x x2 2+2+2x x-3=0-3=0的根;的根;(2 2)p p:平行四边形的对角线相等;平行四边形的对角线相等;q q:平行四边:平行四边 形的对角线互相垂直;形的对角线互相垂直;(3 3)p p:00;q q:x x|x x2 2-3-3x x-5
11、0-50 R R;(4 4)p p:5555;q q:2727不是质数不是质数.(1)(1)利用利用“或或”、“且且”、“非非”把把 两个命题联结成新命题;两个命题联结成新命题;(2)(2)根据命题根据命题p p和命题和命题q q的真假判断复合命题的真假的真假判断复合命题的真假.思维启迪思维启迪解解 (1 1)p p为假命题,为假命题,q q为真命题为真命题.p p或或q q:1:1是质数或是方程是质数或是方程x x2 2+2+2x x-3=0-3=0的根的根.真命题真命题.p p且且q q:1:1既是质数又是方程既是质数又是方程x x2 2+2+2x x-3=0-3=0的根的根.假命题假命题
12、.p p:1:1不是质数不是质数.真命题真命题.(2 2)p p为假命题,为假命题,q q为假命题为假命题.p p或或q q:平行四边形的对角线相等或互相垂直平行四边形的对角线相等或互相垂直.假命题假命题.p p且且q q:平行四边形的对角线相等且互相垂直平行四边形的对角线相等且互相垂直.假命题假命题.p p:有些平行四边形的对角线不相等有些平行四边形的对角线不相等.真命题真命题.(3 3)0 0,p p为假命题,为假命题,q q为真命题为真命题.p p或或q q:00或或 x x|x x2 2-3-3x x-50-50 R R,真命题,真命题,p p且且q q:00且且 x x|x x2 2
13、-3-3x x-50-5555,假命题,假命题.“p p或或q q”、“p p且且q q”、“p p”形式命题真形式命题真假的判断步骤:假的判断步骤:(1 1)确定命题的构成形式;)确定命题的构成形式;(2 2)判断其中命题)判断其中命题p p、q q的真假;的真假;(3 3)确定)确定“p p或或q q”、“p p且且q q”、“p p”形式命题形式命题的真假的真假.探究提高探究提高知能迁移知能迁移3 3 写出由下列各组命题构成的写出由下列各组命题构成的“p p且且q q”“p p或或q q”“”“p p”形式的复合命题,并判断真假形式的复合命题,并判断真假.(1)(1)p p:66,:66
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.2 简易逻辑及充要条件 简易 逻辑 充要条件
限制150内