2.3.2_双曲线的简单几何性质_(1-3)67381.ppt
《2.3.2_双曲线的简单几何性质_(1-3)67381.ppt》由会员分享,可在线阅读,更多相关《2.3.2_双曲线的简单几何性质_(1-3)67381.ppt(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3.22.3.2 双曲线简单的几何性质双曲线简单的几何性质 (一一)定义定义定义定义图象图象图象图象方程方程方程方程焦点焦点焦点焦点a.b.c a.b.c 的关系的关系的关系的关系|MF1|-|MF2|=2a(2aa0e 1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:)定义:(2)e e的范围的范围:(3)e e的含义:的含义:(4)等轴双曲线的离心率等轴双曲线的离心率e=?(5)xyo-aab-b(1)范围)范围:(2)对称性)对称性:关于关于x轴、轴、y轴、原点都对称轴、原点都对称(3)顶点)顶点:(0,-a)、(0,a)(4)渐近线)渐近线:(5)离心率)离心率:小小
2、结结或或关于关于坐标坐标轴和轴和原点原点都对都对称称性性质质双双曲曲线线范围范围对称对称 性性 顶点顶点 渐近渐近 线线离心离心 率率图象图象例例1:求双曲线求双曲线的实半轴长的实半轴长,虚半轴长虚半轴长,焦点坐标焦点坐标,离心率离心率.渐近线方程。渐近线方程。解:把方程化为标准方程解:把方程化为标准方程可得可得:实半轴长实半轴长a=4虚半轴长虚半轴长b=3半焦距半焦距c=焦点坐标是焦点坐标是(0,-5),(0,5)离心率离心率:渐近线方程渐近线方程:14416922=-xy1342222=-xy53422=+45=ace例题讲解例题讲解 12=+byax222(a b 0)12222=-by
3、ax(a 0 b0)222=+ba(a 0 b0)c222=-ba(a b0)c椭椭 圆圆双曲线双曲线方程方程a b c关系关系图象图象yXF10F2MXY0F1F2 p小小 结结关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率A1(-a,0),),A2(a,0)A1(0,-a),),A2(0,a)关于关于x轴、轴、y轴、原点对称轴、原点对称渐近线渐近线.yB2A1A2 B1 xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)2.2.求中心在原点,对称轴为坐标轴,经过点求中心在原点,对称
4、轴为坐标轴,经过点P(1,(1,3)3)且离心率为且离心率为 的双曲线标准方程的双曲线标准方程.1 1.过点(过点(1,2),且渐近线为),且渐近线为的双曲的双曲线线方程是方程是_.2.3.22.3.2 双曲线简单的几何性质双曲线简单的几何性质 (二二)关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率yxOA2B2A1B1.F1F2yB2A1A2 B1 xO.F2F1A1(-a,0),),A2(a,0)B1(0,-b),),B2(0,b)F1(-c,0)F2(c,0)F1(-c,0)F2(c,0)关于关于x轴、轴、y轴、原点对称轴、原点对称A
5、1(-a,0),),A2(a,0)渐进线渐进线无无关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率A1(-a,0),),A2(a,0)A1(0,-a),),A2(0,a)关于关于x轴、轴、y轴、原点对称轴、原点对称渐进线渐进线.yB2A1A2 B1 xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)例例2:1、若双曲线的渐近线方程为、若双曲线的渐近线方程为 则双曲线则双曲线的离心率为的离心率为 。2.已知双曲线的焦点在已知双曲线的焦点在x轴,中心在原点,如果焦轴,中心在原点,如果焦距为距
6、为8,实轴长为,实轴长为6,求双曲线的标准方程及其离,求双曲线的标准方程及其离心率?心率?课堂练习课堂练习例例3:求下列双曲线的标准方程:求下列双曲线的标准方程:例题讲解例题讲解 法二:法二:巧设方程巧设方程,运用待定系数法运用待定系数法.设双曲线方程为设双曲线方程为 ,法二:法二:设双曲线方程为设双曲线方程为 双曲线方程为双曲线方程为 ,解之得解之得k=4,例例4、双曲线型自然通风塔的外形,是双曲线、双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的的一部分绕其虚轴旋转所成的曲面,它的最小半径为最小半径为12m,上口半径为上口半径为13m,下口半径下口半径为为25m,高高
7、55m.选择适当的坐标系,求出此选择适当的坐标系,求出此双曲线的方程双曲线的方程(精确到精确到1m).AA0 xCCBBy131225例题讲解例题讲解 例例5 5、点、点M M(x,yx,y)与定点与定点F F(5,05,0),),的距离的距离和它到定直线:和它到定直线:的距离的比是常的距离的比是常数数 ,求点求点M M的轨迹的轨迹.y0dxyOlF引例:引例:点点M(x,y)与定点与定点F(c,0)的距离和它到定直线的距离和它到定直线 的距离比是常数的距离比是常数 (ca0),求点,求点M的轨迹的轨迹.M解:解:设点设点M(x,y)到到l的距离为的距离为d,则,则即即化简得化简得(c2a2)
8、x2 a2y2=a2(c2 a2)设设c2a2=b2,(a0,b0)故点故点M的轨迹为实轴、虚轴长分别为的轨迹为实轴、虚轴长分别为2a、2b的双曲线的双曲线.b2x2a2y2=a2b2即即就可化为就可化为:M点点M的轨迹也包括双的轨迹也包括双曲线的左支曲线的左支.一、第二定义一、第二定义 双曲线的第二定义双曲线的第二定义 平面内,若平面内,若定点定点F不在定直线不在定直线l上,则到定点上,则到定点F的的距离与到定直线距离与到定直线l的距离比为常数的距离比为常数e(e1)的点的轨迹是的点的轨迹是双曲线双曲线。定点定点F是是双曲线的焦点双曲线的焦点,定直线叫做,定直线叫做双曲线双曲线的准线的准线,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3 双曲线 简单 几何 性质 67381
限制150内