2.3.2_双曲线的简单几何性质_(1-3).ppt
《2.3.2_双曲线的简单几何性质_(1-3).ppt》由会员分享,可在线阅读,更多相关《2.3.2_双曲线的简单几何性质_(1-3).ppt(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3.22.3.2 双曲线简单的几何性质双曲线简单的几何性质 2、对称性、对称性 一、研究双曲线一、研究双曲线 的简单几何性质的简单几何性质1、范围、范围关于关于x轴、轴、y轴和原点都是对称轴和原点都是对称。x轴、轴、y轴是双曲线的对称轴,原点是对称中心,轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的又叫做双曲线的中心中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授课堂新授 3、顶点、顶点(1)双曲线与对称轴的交点,叫做双曲线的)双曲线与对称轴的交点,叫做双曲线的顶点顶点xyo-bb-aa如图,线段如图,线段 叫做双曲线叫做双曲线的实轴,它的长为的实轴,它的长为
2、2a,a叫做叫做实半轴长;线段实半轴长;线段 叫做双叫做双曲线的虚轴,它的长为曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长叫做双曲线的虚半轴长(2)实轴与虚轴等长的双曲线实轴与虚轴等长的双曲线叫叫等轴双曲线等轴双曲线(3)M(x,y)4、渐近线、渐近线N(x,y)xyoab(1)(2)利用渐近线可以较准确的利用渐近线可以较准确的画出双曲线的草图画出双曲线的草图(3)5、离心率、离心率离心率。e 1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:)定义:(2)e e的范围的范围:(4)等轴双曲线的离心率等轴双曲线的离心率e=?(5)例例1:求双曲线求双曲线的实半轴长的实半轴长,虚半
3、轴长虚半轴长,焦点坐标焦点坐标,离心率离心率.渐近线方程。渐近线方程。分析:把方程化为标准方程分析:把方程化为标准方程14416922=-xy1342222=-xy例题讲解例题讲解 例例2:或或关于关于坐标坐标轴和轴和原点原点都对都对称称性性质质双双曲曲线线范围范围对称对称 性性 顶点顶点 渐近渐近 线线离心离心 率率图象图象例例3:求下列双曲线的标准方程:求下列双曲线的标准方程:法二:法二:设双曲线方程为设双曲线方程为 双曲线方程为双曲线方程为 ,解之得解之得k=4,法二:法二:巧设方程巧设方程,运用待定系数法运用待定系数法.设双曲线方程为设双曲线方程为 ,“共渐近线共渐近线”的双曲线的应用
4、的双曲线的应用0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;a0),则点,则点M的轨迹是的轨迹是双曲线双曲线.MM点点M的轨迹也包括双的轨迹也包括双曲线的左支曲线的左支.例例2 2、点、点M M(x,yx,y)与定点与定点F F(5,05,0)的距离)的距离和它到定直线:和它到定直线:的距离的比是常的距离的比是常数数 ,求点求点M M的轨迹的轨迹.一、双曲线的第二定义一、双曲线的第二定义 归纳总结归纳总结1.双曲线双曲线的第二定义的第二定义 平面内,若平面内,若定点定点F不在定直线不在定直线l上,则到定点上,则到定点F的的距离与到定直线
5、距离与到定直线l的距离比为常数的距离比为常数e(e1)的点的轨迹是的点的轨迹是双曲线双曲线。定点定点F是是双曲线的焦点双曲线的焦点,定直线叫做,定直线叫做双曲线双曲线的准线的准线,常数,常数e是是双曲线的离心率双曲线的离心率。2.双曲线双曲线的准线方程的准线方程对于双曲线对于双曲线准线为准线为对于双曲线对于双曲线准线为准线为注意注意:把双曲线和椭圆的知识相类比把双曲线和椭圆的知识相类比.例例3、已知双曲线已知双曲线F1、F2是它的左、右焦点是它的左、右焦点.设点设点A(9,2),在曲线上求点在曲线上求点M,使,使 的值最小的值最小,并求这个最小值并求这个最小值.xyoF2MANA11、教材第8
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3 双曲线 简单 几何 性质
限制150内