第四章随机解释变量问题.ppt
《第四章随机解释变量问题.ppt》由会员分享,可在线阅读,更多相关《第四章随机解释变量问题.ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章第四章 随机解释变量问题随机解释变量问题 学习目的学习目的 了解随机解释变量问题的概念、产生的原因及造成的后了解随机解释变量问题的概念、产生的原因及造成的后果、克服的方法。果、克服的方法。基本要求基本要求1)认识到随机解释变量问题是计量经济学建模经常会遇到的问题认识到随机解释变量问题是计量经济学建模经常会遇到的问题;2)了解随机解释变量问题的概念、产生的原因及造成的后果了解随机解释变量问题的概念、产生的原因及造成的后果;3)掌握存在随机解释变量问题时的计量经济学建模方法及应用。掌握存在随机解释变量问题时的计量经济学建模方法及应用。随机解释变量问题及其产生原因随机解释变量问题及其产生原因随
2、机解释变量的影响随机解释变量的影响随机解释变量问题的修正随机解释变量问题的修正第四章第四章 随机解释变量问题随机解释变量问题第一节第一节 随机解释变量问题及其产生原因随机解释变量问题及其产生原因、随机解释变量问题、随机解释变量问题 在很多情况下,我们不能假定解释变量全部是确定性变量,而实际上它在很多情况下,我们不能假定解释变量全部是确定性变量,而实际上它们有的是随机变量,我们把违背这一基本假设的问题称为们有的是随机变量,我们把违背这一基本假设的问题称为随机解释变量问题随机解释变量问题。对于模型对于模型 (4-1)其基本假设之一是解释变量其基本假设之一是解释变量X1,X2,Xk都是确定性变量。如
3、果都是确定性变量。如果存在一个或多个解释变量为随机变量,则称原模型存在随机解释变量问题。存在一个或多个解释变量为随机变量,则称原模型存在随机解释变量问题。例例:为讨论方便,假设为讨论方便,假设(4-1)式中式中X1为随机解释变量。为随机解释变量。对于随机解释变量对于随机解释变量X1,由于它和随机扰动项,由于它和随机扰动项i的关系不同,会使模型的关系不同,会使模型参数估计量的特性发生不同变化,所以又可分三种不同情况:参数估计量的特性发生不同变化,所以又可分三种不同情况:析析:1随机解释变量与随机干扰项独立随机解释变量与随机干扰项独立2随机解释变量与随机干扰项同期无关随机解释变量与随机干扰项同期无
4、关,但异期相关但异期相关3随机解释变量与随机干扰项同期相关随机解释变量与随机干扰项同期相关(4-3)(4-4)即即(4-5)即即即即(4-2)二、随机解释变量问题产生的原因二、随机解释变量问题产生的原因随机解释变量问题主要表现随机解释变量问题主要表现但是,并不是所有包含滞后被解释变量的模型都带来但是,并不是所有包含滞后被解释变量的模型都带来“随机解释变量问题随机解释变量问题”用滞后被解释变量作为模型的解释变量的情况。用滞后被解释变量作为模型的解释变量的情况。耐用品存量调整模型。耐用品存量调整模型。著名的著名的“耐用品存量调整模型耐用品存量调整模型”可表示为可表示为(4-6)例例4-1:4-1:
5、该模型表示,耐用品的存量该模型表示,耐用品的存量 由前一个时期的存量由前一个时期的存量 和当期收入和当期收入 共同决定。这是一个滞后被解释变量作为解释变量的模型。但是,如果模型不共同决定。这是一个滞后被解释变量作为解释变量的模型。但是,如果模型不 只与只与 相关,与相关,与 不相关,属于随机解释变量与随机干扰项同期无关,但异期相关的情况。不相关,属于随机解释变量与随机干扰项同期无关,但异期相关的情况。存在随机干扰项的序列相关性,那么随机解释变量存在随机干扰项的序列相关性,那么随机解释变量例例4-2:4-2:合理预期的消费函数模型。合理预期的消费函数模型。合理预期理论认为消费合理预期理论认为消费
6、 是由对收入的预期是由对收入的预期 所决定的:所决定的:(4-7)在预期收入在预期收入 与实际收入与实际收入之间存在假设:之间存在假设:(4-8)的情况下,容易推出合理预期消费函数模型:的情况下,容易推出合理预期消费函数模型:(4-9)在该模型中,作为解释变量的在该模型中,作为解释变量的 不仅是一个随机解释变量,而且与模型的不仅是一个随机解释变量,而且与模型的 高度相关高度相关(因为因为与与高度相关高度相关),属于随机解释变量,属于随机解释变量 随机干扰项随机干扰项与随机干扰项同期相关的情况。与随机干扰项同期相关的情况。第二节第二节 随机解释变量的影响随机解释变量的影响 计量经济学模型一旦出现
7、随机解释变量,且与随机干扰计量经济学模型一旦出现随机解释变量,且与随机干扰项相关的话,如果仍采用普通最小二乘法估计模型参数,则项相关的话,如果仍采用普通最小二乘法估计模型参数,则不同性质的随机解释变量问题会产生不同的后果。不同性质的随机解释变量问题会产生不同的后果。以一元线性回归模型为例进行说明。以一元线性回归模型为例进行说明。图4-1 从图形从图形(图图4-1)上看,如果随机解释变量与随机干扰项正相关,则在抽上看,如果随机解释变量与随机干扰项正相关,则在抽取样本时,容易出现取样本时,容易出现X值较小的点在总体回归线下方,而值较小的点在总体回归线下方,而X值较大的点在总值较大的点在总体回归线上
8、方的情况,因此,拟合的样本回归线则可能低估体回归线上方的情况,因此,拟合的样本回归线则可能低估(underestimate)了截距项,而高估了截距项,而高估(overestimate)斜率项。反之,如果随机解释变量与随机斜率项。反之,如果随机解释变量与随机干扰项负相关,则往往导致拟合的样本回归线高估截距项,而低估斜率项。干扰项负相关,则往往导致拟合的样本回归线高估截距项,而低估斜率项。对一元线性回归模型对一元线性回归模型(4-10)在第二章曾得到如下最小二乘估计量:在第二章曾得到如下最小二乘估计量:(4-11)随机解释变量随机解释变量X与随机干扰项与随机干扰项的关系不同,参数的关系不同,参数O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四章 随机解释变量问题 第四 随机 解释 变量 问题
限制150内