《勾股定理》教案(共6页).doc
《《勾股定理》教案(共6页).doc》由会员分享,可在线阅读,更多相关《《勾股定理》教案(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上17.1 勾股定理教学目标:知识与技能1掌握勾股定理,了解利用拼图验证勾股定理的方法2运用勾股定理解决一些实际问题过程与方法1经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力2在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识情感态度与价值观1利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,借助此过程对学生进行爱国主义的教育2经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣教学重点:经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值教学难点:经历用不同的拼图方法证明勾股定理教
2、具准备:方格纸、4个全等的三角形,多媒体课件演示教学过程:一、知识回顾(活动1) 上节课我们已经认识的勾股定理,请大家说说勾股定理的内容。二、探索研究(活动2) 我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下列问题:例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。 求证:a2b2=c2。(2)分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。其间让充分放手让学生自主完成探究过程,进而得出结论。拼成如图所示,其等量关系为:4S+S小正=S大正 4ab(ba)2=c2,化简可证。发挥学生的想象能力拼出不同的图形,进
3、行证明。 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。活动3图(3)这个图案和3世纪我国汉代的赵爽在注解周髀算经时给出的图案一模一样,人们称它为“赵爽弦图”,赵爽利用弦图证明命题1(即勾股定理)的基本思路如下,如图(7)。把边长为a,b的两个正方形连在一起,它的面积为a2+b2,另一方面这个图形由四个全等的直角三角形和一个正方形组成把图(7)中左、右两个三角形移到图(9)所示的位置,就会形成一个c为边长的正方形 议一议:观察上图,用数格子的方法判断图中两个三角形的三边关系是否满足a2+b2=c2设计意图:前面已经讨论了直角三角形三边满足的关系,那么锐角三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 教案
限制150内